

OME Data Model and File Formats 6.3 Documentation

This documentation covers the OME Data Model, OME-XML and OME-TIFF.

The OME Model is a specification for storing data on biological imaging.
The model includes image parameters, such as XYZ dimensions and pixels type,
as well as extensive metadata on, for example, image acquisition, annotation,
and regions of interest (ROIs). This common specification is essential
for the exchange of image data between different software packages. OME-XML is
a file format used to store data according to the OME Model, serving as a
convenient file format for data migration from one site or user to another.
OME-TIFF is a multi-plane tiff file that contains OME metadata in the header,
in the form of OME-XML. This allows the pixels to be read with any
TIFF-compatible program, and the metadata to be extracted with any OME-aware
application. Our paper describing the design and implementation of the OME-XML file [https://genomebiology.biomedcentral.com/articles/10.1186/gb-2005-6-5-r47]
appeared in Genome Biology.

The OME consortium currently provides three major tools capable of working
with OME-XML and OME-TIFF:

	The Bio-Formats [https://www.openmicroscopy.org/bio-formats/] library is a full-featured library with many
features related to OME-XML, including conversion of third party file
format metadata into OME-XML structures. It can write image data to the
OME-TIFF format.

	OME Files C++ [https://www.openmicroscopy.org/ome-files/] is a reference implementation of the OME
data model and OME-TIFF for C++ developers wishing to support these in
their own software. It can read and write OME-TIFF data.

	The OMERO server [https://www.openmicroscopy.org/omero/] works directly with OME-XML. It can
import data from OME-XML and OME-TIFF, as well as export to OME-TIFF.

If you have used OME-XML, OME-TIFF, Bio-Formats or OMERO in your work please
use the correct citations [https://www.openmicroscopy.org/citing-ome/] to acknowledge us.

We have received support from several companies who use our file formats, for
details see our list of Partners [https://www.openmicroscopy.org/commercial-partners/].

Note

The versioning for this documentation reflects updates to any of the
components it covers and is therefore incremented more frequently than the
Schema version, which only covers the Data Model and for which a version
history is provided below.

OME-TIFF

	The OME-TIFF format
	OME-TIFF file structure

	OME-TIFF specification

	OME-TIFF example source code for common operations

	OME-TIFF sample data

OME-XML

	The OME-XML format
	Extracting, processing and validating OME-XML

	OME-XML Java library

OMERO Pyramid

	The OMERO pyramid format

File specifications

	Compliant file specification
	Compliant HCS specification

	Minimum specification

Developer tools and guidelines

	Developer introduction
	Using OME-XML schema elements

	File compression

	Sample image files

	IDs and LSIDs in OME-XML

	The OME system of units

The Data Model in detail

	Schema Generation information
	Current Data Model overview

	Filter and FilterSet

	Screen Plate Well

	Structured Annotations

	ROI model

	6D, 7D and 8D storage

	Legacy use-case support

Data Model history

	Schema version information
	Transformations

	Changes for June 2016 release 2

	Changes for June 2016

	Changes for January 2015

	Changes for June 2013

	Changes for June 2012

	Changes for June 2011

	Changes for June 2010

	Changes for April 2010

	Changes for September 2009

	Changes for September 2008

	Changes for February 2008

	Changes for June 2007 release 2

	Changes for June 2007

The OME-TIFF format

	OME-TIFF file structure

	OME-TIFF specification

	OME-TIFF example source code for common operations

	OME-TIFF sample data

The OME-TIFF format was created to
maximize the respective strengths of OME-XML and TIFF. It takes advantage
of the rich metadata defined in OME-XML while retaining the pixels in
multi-page TIFF format for compatibility with many more applications.

Characteristics

An OME-TIFF dataset has the following characteristics:

	Image planes are stored within one multi-page TIFF file, or across
multiple TIFF files. Any image organization is feasible.

	A complete OME-XML metadata block describing the dataset is embedded
in each TIFF file’s header. Thus, even if some of the TIFF files in a
dataset are misplaced, the metadata remains intact.

	The OME-XML metadata block may contain anything allowed in a standard
OME-XML file.

	OME-TIFF uses the standard TIFF mechanism for storing one or more image
planes in each of the constituent files, instead of encoding pixels as
base64 chunks within the XML. Since TIFF is an image
format, it makes sense to only use OME-TIFF as opposed to OME-XML, when
there is at least one image plane.

Support

OME-TIFF is supported by:

	BIOVIA [https://www.3ds.com/products-services/biovia/]

	Bitplane AG [http://www.bitplane.com/]

	Carl Zeiss Microscopy GmbH [https://www.zeiss.com/microscopy/int/home.html]

	Cytiva [https://www.cytivalifesciences.com/] (formerly GE Healthcare, Applied Precision)

	Definiens [http://www.definiens.com]

	DRVision Technologies LLC [https://www.drvtechnologies.com]

	Image-Pro by Media Cybernetics, Inc. [https://www.mediacy.com/]

	iMagic [https://www.imagic.ch/en]

	Intelligent Imaging Innovations, Inc. [https://www.intelligent-imaging.com]

	Leica Inc. [https://www.leica-microsystems.com/]

	Mayachitra Inc. [http://mayachitra.com/]

	Micro-Manager [https://micro-manager.org/wiki/]

	Molecular Devices Inc. [https://www.moleculardevices.com]

	PerkinElmer [http://www.perkinelmer.com/]

	Scientifica [http://www.scientifica.uk.com]

	Scientific Volume Imaging B.V. [https://svi.nl/HomePage]

	Strand Life Sciences [https://strandls.com]

	TILL Photonics GmbH, now FEI Munich [https://www.fei.com/home/]

Public image repositories allowing image downloads as OME-TIFF

	ASCB CELL Image Library [http://www.cellimagelibrary.org/]

	Harvard Medical School LINCS Project [http://lincs.hms.harvard.edu/]

	Stowers Institute Original Data Repository [http://www.stowers.org/research/publications/odr]

For detailed technical information on OME-TIFF, see the
OME-TIFF specification.

There is further information about Extracting, processing and validating OME-XML available.

We also have some example code in Java for
extracting and modifying TIFF comments and converting other file formats
to OME-TIFF.

Lastly, some OME-TIFF sample data is available for
download, along with statistics comparing OME-TIFF and OME-XML with
various types of compression.

OME-TIFF file structure

The following section discusses various considerations when designing
OME-TIFF filesets distributed over multiple files.

Single versus multiple files

Splitting a fileset across multiple files can have advantages in terms of
acquisition but also processing purposes. The OME-TIFF file format can support
any image organization. However, using one TIFF file per timepoint per channel
with the focal planes for that timepoint and channel stored sequentially
within the TIFF makes for very easy creation of TiffData
elements (see 5D datasets).

The main downside of splitting OME-TIFF over multiple files is their
inherent fragility to common file-system operations such as file renaming or
file copying which have the potential to “break” the fileset.

See OME-TIFF sample data for examples of single OME-TIFF file versus OME-TIFF
distributed over multiple files.

File size

The TIFF file format internally uses 32-bit byte offsets. The largest offset
which can be represented is 4GB, making this value the upper limit of the file
size supported by the design.

The OME-TIFF file format supports the BigTIFF file extensions allowing the
use of 64-bit byte offsets to overcome this size limit.

The main limitation of the BigTIFF file extension is the degree of its
adoption in the community. Although OME Bio-Formats and OMERO will handle
OME-TIFF using the BigTIFF file extension, other tools might not be able to
open it.

Metadata redundancy

Storing multiple planes per OME-TIFF file and keeping the OME-XML metadata
embedded in every file header is recommended (see the
5D datasets) but is not always practical.
Normally, the OME-XML metadata block is small in comparison with the binary
pixel data in the file, but in some cases, it may be disproportionately
larger.

Common reasons for this situation include:

	storing each image plane in its own TIFF file

	having a large amount of metadata such as plane-specific timestamps

	having many structured annotations in the OME-XML.

For example, if you have a dataset with 1,000 time points, with each plane
recorded at 512 × 512 as uint8 pixel type, storing each plane in its own file
uncompressed requires ~256KB of disk per file, and ~256MB total. But if you
have 5MB of corresponding OME-XML metadata, embedding a copy of that metadata
in every file would result in a dataset nearly 20 times larger than before,
requiring ~5.5MB of disk per file, and more than 5GB total.

One of the advantages of reproducing the OME-XML metadata across files is
redundancy. If one of the constituent files survives data loss, the metadata
survives. The space tradeoff of this duplication is acceptable when compared
to the bulk of the pixel data in most cases, provided a suitable number of
planes are stored in each TIFF.

Companion file vs master OME-TIFF file

Since the 2011-06 version of the OME-XML schema, it
is possible to store partial OME-XML metadata blocks in some or all of the
TIFF files pointing to a master file containing the full OME-XML metadata (see
the technical specification for more details).

The master file can be either a master OME-TIFF file or a companion OME-XML
file (see the Multi-file OME-TIFF filesets).

Using a companion OME-XML file allows information that can only be generated
at the end of the acquisition to be easily appended without the need to
manipulate existing TIFF IFDs. It has the same drawbacks as those
highlighted above in the sense that this companion file needs to be preserved
as part of the fileset to prevent metadata loss.

See also

	Proposed tweak to µManager data files in 2.0 [http://lists.openmicroscopy.org.uk/pipermail/ome-devel/2016-April/003618.html]
	Community discussion about usage of companion file in OME-TIFF filesets

OME-TIFF specification

The following provides technical details on the OME-TIFF
format. It assumes familiarity with both the TIFF [https://www.loc.gov/preservation/digital/formats/fdd/fdd000022.shtml] specification and
the OME Data Model [https://www.openmicroscopy.org/Schemas/], although there is some review of both.

The key words MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL in this specification are to be interpreted as described in RFC 2119 [https://www.ietf.org/rfc/rfc2119.txt].

An OME-TIFF dataset consists of:

	one or more files in standard TIFF [https://www.loc.gov/preservation/digital/formats/fdd/fdd000022.shtml] format with the file extension
.ome.tif or .ome.tiff or
BigTIFF format [https://www.awaresystems.be/imaging/tiff/bigtiff.html]
with one of these same file extensions or a BigTIFF-specific
extension .ome.tf2, .ome.tf8 or .ome.btf

	a string of OME-XML metadata embedded in the ImageDescription tag of the
first IFD (Image File Directory) of each file. The XML string must be UTF-8
encoded.

Note that BigTIFF-specific file extensions are an addition to the original
specification, and software using an older version of the specification may
not be able to handle these file extensions.

OME-XML metadata

This string is a standard block of OME-XML, except that instead of
storing pixels as BinData elements with base64-encoded pixel data
beneath them, it references pixels with TiffData elements that specify
which TIFF IFD corresponds to each image plane. As such, the OME-XML
string can be regarded as a “metadata block” because the actual pixels
are stored within the TIFF structure, not the XML.

[image: OME-TIFF header]

OME-TIFF header

The diagram OME-TIFF header (adapted from the TIFF
specification) shows the organization of a TIFF header along with the
placement of the OME-XML metadata block. Note this is for the TIFF
standard specification only; the header structure is slightly
different for BigTIFF; see the BigTIFF file format specification [https://www.awaresystems.be/imaging/tiff/bigtiff.html]. A TIFF file can
contain any number of IFDs, with each one specifying an image plane along with
certain accompanying metadata such as pixel dimensions, physical
dimensions, bit depth, color table, etc. One of the fields an IFD can
contain is ImageDescription, which provides a place to write a comment
describing the corresponding image plane. This field is a convenient
place to store the OME-XML metadata block—any TIFF library capable of
parsing IFDs and extracting an ImageDescription comment can easily
obtain an OME-TIFF file’s entire set of metadata as OME-XML.

Note

A TIFF file contains one IFD per image plane, but the
OME-XML metadata block is stored only in the first IFD structure.
However, for an image sequence distributed across multiple OME-TIFF
files, each file will contain a copy of the OME-XML metadata block
(see Partial OME-XML metadata below for exceptions to
this rule). Thus, if any files are lost, the metadata is preserved. The
OME-XML block in each file is nearly identical—the only difference is in
the TiffData elements appearing beneath Pixels elements, since each TIFF
file contains a different portion of the image data (see
Multi-file OME-TIFF below).

DimensionOrder

As mentioned above, the standard OME-XML format encodes image planes as
base64 character blocks contained within BinData elements beneath a
Pixels element. The Pixels element has a DimensionOrder attribute that
specifies the rasterization order of the image planes. For example,
XYZTC means that there is a series of image planes with the Z axis
varying fastest, followed by T, followed by C (e.g. if a XYZTC dataset
contains two focal planes, three time points and two channels, the order
would be: Z0-T0-C0, Z1-T0-C0, Z0-T1-C0, Z1-T1-C0, Z0-T2-C0, Z1-T2-C0,
Z0-T0-C1, Z1-T0-C1, Z0-T1-C1, Z1-T1-C1, Z0-T2-C1, Z1-T2-C1).

Since a multi-page TIFF has no limit to the number of image planes it
can contain, the same scheme described above for specifying the
rasterization order works within the OME-TIFF file. The only difference
is that instead of the pixels being encoded in base64 inside BinData
elements, they are stored within the TIFF file in the standard fashion,
one per IFD; see the TiffData element below for specifics.

TIFF comments

When embedding your OME-XML string as a TIFF comment, it is best practice to
preface it with the following informative comment:

<!-- Warning: this comment is an OME-XML metadata block, which contains
crucial dimensional parameters and other important metadata. Please edit
cautiously (if at all), and back up the original data before doing so.
For more information, see the OME-TIFF documentation:
https://docs.openmicroscopy.org/latest/ome-model/ome-tiff/ -->

The TiffData element

As the illustration OME-TIFF header shows, all that is needed to
indicate that the pixels are located within the enclosing TIFF structure is a
TiffData [https://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#TiffData]
element with no attributes. By default, the first IFD corresponds to
the first image plane (Z0-T0-C0), and the rasterization order of subsequent
IFDs is given by the Pixels element’s DimensionOrder attribute, as
described above.

However, there are several attributes for TiffData elements allowing
greater control over the dimensional position of each IFD:

	IFD [https://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#TiffData_IFD]
- gives the IFD(s) for which this element is applicable.
Indexed from 0. Default is 0 (the first IFD).

	FirstZ [https://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#TiffData_FirstZ]
- gives the Z position of the image plane at the specified
IFD. Indexed from 0. Default is 0 (the first Z position).

	FirstT [https://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#TiffData_FirstT]
- gives the T position of the image plane at the specified
IFD. Indexed from 0. Default is 0 (the first T position).

	FirstC [https://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#TiffData_FirstC]
- gives the C position of the image plane at the specified
IFD. Indexed from 0. Default is 0 (the first C position).

	PlaneCount [https://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#TiffData_PlaneCount]
- gives the number of IFDs affected. Dimension order of
IFDs is given by the enclosing Pixels element’s DimensionOrder
attribute. Default is the number of IFDs in the TIFF file, unless an
IFD is specified, in which case the default is 1.

Here are some example XML fragments:

Fragment 1

<Pixels ID="urn:lsid:loci.wisc.edu:Pixels:ows325"
 Type="uint8" DimensionOrder="XYZTC"
 SizeX="512" SizeY="512" SizeZ="3" SizeT="2" SizeC="2">
 <TiffData/>
</Pixels>

	IFD

	Position

	0

	Z0-T0-C0

	1

	Z1-T0-C0

	2

	Z2-T0-C0

	3

	Z0-T1-C0

	4

	Z1-T1-C0

	5

	Z2-T1-C0

	6

	Z0-T0-C1

	7

	Z1-T0-C1

	8

	Z2-T0-C1

	9

	Z0-T1-C1

	10

	Z1-T1-C1

	11

	Z2-T1-C1

The default TiffData tag simply assigns every IFD to a position
according to the given DimensionOrder rasterization. If the TIFF file
has more than SizeZ*SizeT*SizeC (3*2*2=12 in this case) IFDs, the
remaining IFDs are extraneous and should be ignored by OME-TIFF readers.

Fragment 2

<Pixels ID="urn:lsid:loci.wisc.edu:Pixels:ows462"
 Type="uint8" DimensionOrder="XYCTZ"
 SizeX="512" SizeY="512" SizeZ="4" SizeT="3" SizeC="2">
 <TiffData PlaneCount="10"/>
</Pixels>

	IFD

	Position

	0

	Z0-T0-C0

	1

	Z0-T0-C1

	2

	Z0-T1-C0

	3

	Z0-T1-C1

	4

	Z0-T2-C0

	5

	Z0-T2-C1

	6

	Z1-T0-C0

	7

	Z1-T0-C1

	8

	Z1-T1-C0

	9

	Z1-T1-C1

When specified, the PlaneCount attribute gives the number of IFDs
affected by the TiffData element. In this case, even though the Pixels
element defines 4*3*2=24 image planes total, the TiffData element
assigns only 10 planes. The remaining 14 planes are unspecified and
hence lost.

Fragment 3

<Pixels ID="urn:lsid:loci.wisc.edu:Pixels:ows197"
 Type="uint8" DimensionOrder="XYZTC"
 SizeX="512" SizeY="512" SizeZ="4" SizeC="3" SizeT="2">
 <TiffData IFD="3" PlaneCount="5"/>
</Pixels>

	IFD

	Position

	3

	Z0-T0-C0

	4

	Z1-T0-C0

	5

	Z2-T0-C0

	6

	Z3-T0-C0

	7

	Z0-T1-C0

States that the rasterization begins at the fourth IFD (IFD #3), and
continues for five planes total. IFDs #0, #1 and #2 are not used, and
should be ignored by OME-TIFF readers.

Fragment 4

 <Pixels ID="urn:lsid:loci.wisc.edu:Pixels:ows789"
 Type="uint8" DimensionOrder="XYZTC"
 SizeX="512" SizeY="512" SizeZ="1" SizeC="1" SizeT="6">
 <TiffData IFD="0" FirstT="5"/>
 <TiffData IFD="1" FirstT="4"/>
 <TiffData IFD="2" FirstT="3"/>
 <TiffData IFD="3" FirstT="2"/>
 <TiffData IFD="4" FirstT="1"/>
 <TiffData IFD="5" FirstT="0"/>
</Pixels>

	IFD

	Position

	0

	Z0-T5-C0

	1

	Z0-T4-C0

	2

	Z0-T3-C0

	3

	Z0-T2-C0

	4

	Z0-T1-C0

	5

	Z0-T0-C0

Any number of TiffData elements may be provided. In this case, the dimensional
positions of each of the first six IFDs are explicitly defined, effectively
overriding the rasterization given by DimensionOrder, storing the planes in
reverse temporal order.

For details on validating your OME-XML metadata block, see the
validating OME-XML section on the Extracting, processing and validating OME-XML page.

Multi-file OME-TIFF

As demonstrated above, the OME-TIFF format is capable of storing the
entire multidimensional image series in one master OME-TIFF file.

Alternatively, a collection of multiple OME-TIFF files may be used. Using
the TiffData attributes outlined above together with
UUID [https://en.wikipedia.org/wiki/Universally_Unique_Identifier]
elements and attributes, the OME-XML metadata block can unambiguously
define which dimensional positions correspond to which IFDs from which
files. Each OME-TIFF need not contain the same number of images.

The only difference between the OME-XML metadata block per TIFF file is the
UUID [https://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#OME_UUID]
attribute of the root OME element. This value should be a distinct
UUID value for each file, so that each TiffData element can
unambiguously reference its relevant file using a UUID child element.

Note

The FileName [https://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#TiffData_TiffData_UUID_FileName]
attribute of the UUID is optional, but strongly recommended—otherwise,
the OME-TIFF reader must scan OME-TIFF files in the working directory
looking for matching UUID signatures.

When splitting an OME-TIFF across multiple files, the OME-XML metadata must
either be embedded into each TIFF file or use partial metadata blocks.

Embedded OME-XML metadata

In the first case, a nearly identical OME-XML metadata block must be inserted
into the first IFD of each constituent OME-TIFF file.

The only difference between the OME-XML metadata block per TIFF file is the
UUID [https://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#OME_UUID]
attribute of the root OME element. This value should be a distinct
UUID value for each file, so that each TiffData element can
unambiguously reference its relevant file using a UUID child element.

The 5D datasets demonstrate how OME-TIFF datasets can be
distributed across multiple files. Each of the files in the set has identical
metadata apart from the UUID, the unique identifier in each file. For
example the identifiers could be distributed as follows:

tubhiswt_C0_TP0.ome.tif with ID 45c8bf18-6aa2-478c-9080-e0b0d3eb1f70

<OME xmlns="http://www.openmicroscopy.org/Schemas/OME/2016-06"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 Creator="OME Bio-Formats 5.2.0-m4"
 UUID="urn:uuid:45c8bf18-6aa2-478c-9080-e0b0d3eb1f70"
 xsi:schemaLocation="http://www.openmicroscopy.org/Schemas/OME/2016-06
 http://www.openmicroscopy.org/Schemas/OME/2016-06/ome.xsd">
...
 <Pixels BigEndian="false" DimensionOrder="XYZTC" ID="Pixels:0"
 Interleaved="false" SignificantBits="8" SizeC="2" SizeT="43"
 SizeX="512" SizeY="512" SizeZ="10" Type="uint8">
...
 <TiffData FirstC="0" FirstT="0" FirstZ="0" IFD="0" PlaneCount="1">
 <UUID FileName="tubhiswt_C0_TP0.ome.tif">
 urn:uuid:45c8bf18-6aa2-478c-9080-e0b0d3eb1f70
 </UUID>
 </TiffData>
...
 <TiffData FirstC="0" FirstT="1" FirstZ="0" IFD="0" PlaneCount="1">
 <UUID FileName="tubhiswt_C0_TP1.ome.tif">
 urn:uuid:743275b7-6726-46bd-b7bb-aca3085f429a
 </UUID>
 </TiffData>
...

tubhiswt_C0_TP1.ome.tif with ID 743275b7-6726-46bd-b7bb-aca3085f429a

<OME xmlns="http://www.openmicroscopy.org/Schemas/OME/2016-06"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 Creator="OME Bio-Formats 5.2.0-m4"
 UUID="urn:uuid:743275b7-6726-46bd-b7bb-aca3085f429a"
 xsi:schemaLocation="http://www.openmicroscopy.org/Schemas/OME/2016-06
 http://www.openmicroscopy.org/Schemas/OME/2016-06/ome.xsd"
...
 <Pixels BigEndian="false" DimensionOrder="XYZTC" ID="Pixels:0"
 Interleaved="false" SignificantBits="8" SizeC="2" SizeT="43"
 SizeX="512" SizeY="512" SizeZ="10" Type="uint8">
...
 <TiffData FirstC="0" FirstT="0" FirstZ="0" IFD="0" PlaneCount="1">
 <UUID FileName="tubhiswt_C0_TP0.ome.tif">
 urn:uuid:45c8bf18-6aa2-478c-9080-e0b0d3eb1f70
 </UUID>
 </TiffData>
...
 <TiffData FirstC="0" FirstT="1" FirstZ="0" IFD="0" PlaneCount="1">
 <UUID FileName="tubhiswt_C0_TP1.ome.tif">
 urn:uuid:743275b7-6726-46bd-b7bb-aca3085f429a
 </UUID>
 </TiffData>
...

And so on for files:

	tubhiswt_C0_TP2.ome.tif with ID 1f462b60-b508-446e-b42a-c4e6fa2a44e8

	tubhiswt_C0_TP3.ome.tif with ID a023901d-43fd-44f2-b4be-159afa1e985c

	…

Partial OME-XML metadata

Instead of embedding the full OME-XML metadata into the header of each
OME-TIFF, partial OME-XML metadata blocks can be stored in some or all of the
OME-TIFF files using the
Binary-Only [https://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#OME_BinaryOnly]
element as illustrated below:

<?xml version="1.0" encoding="UTF-8"?>
<OME UUID="urn:uuid:4978087c-a670-4b12-af53-256c62d8d101"
 xmlns="http://www.openmicroscopy.org/Schemas/OME/2016-06"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.openmicroscopy.org/Schemas/OME/2016-06
 http://www.openmicroscopy.org/Schemas/OME/2016-06/ome.xsd">
 <BinaryOnly MetadataFile="multifile.companion.ome"
 UUID="urn:uuid:07504f88-7bc3-11e0-b937-2faf67bc00b3"/>
</OME>

The MetadataFile [https://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#OME_OME_BinaryOnly_MetadataFile]
element should contain the name of the master file containing the full
OME-XML metadata block and
UUID [https://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#OME_OME_BinaryOnly_UUID]
should contain the UUID of this master file.

The master file containing the full OME-XML metadata should be either an
OME-XML companion file with the extension .companion.ome or a master
OME-TIFF file containing the full metadata (see Multi-file OME-TIFF filesets for
representative samples).

Sub-resolutions

New in version 6.0.0.

OME-TIFF supports multi-resolution images or pyramidal images where individual
planes are stored at different levels of resolution.
The downsampled image planes are called pyramidal levels, sub-resolution image
planes or sub-resolutions.

Supported resolutions

OME-TIFF planes can be reduced along the X and Y dimensions. Each pyramidal
level must be a downsampling of the full-resolution plane in the X and Y
dimensions and the resolution should stay unchanged in the other dimensions.
The downsampling factor:

	should be an integer value,

	should be identical along the X and the Y dimensions,

	should stay the same between each consecutive pyramid level.

The following table below shows two examples of pyramid level dimensions
using typical downsampling factors:

	
	Example 1 (X × Y × Z × C × T)

	Example 2 (X × Y × Z × C × T)

	Downsampling factor

	3

	4

	Level 0 (full-resolution)

	9234 × 6075 × 1 × 1 × 10

	38912 × 25600 × 200 × 3 × 1

	Level 1

	3078 × 2025 × 1 × 1 × 10

	9728 × 6400 × 200 × 3 × 1

	Level 2

	1026 × 675 × 1 × 1 × 10

	2432 × 1600 × 200 × 3 × 1

	Level 3

	342 × 225 × 1 × 1 × 10

	608 × 400 × 200 × 3 × 1

	Level 4

	114 × 74 × 1 × 1 × 10

	152 × 100 × 200 × 3 × 1

	Level 5

	38 × 25 × 1 × 1 × 10

	

Storage

Full-resolution image planes must remain stored as described above using a valid TIFF IFD and referenced from the OME-XML metadata using the
TiffData element.

Each sub-resolution must be stored in the same IFD as the full-resolution
image plane. Additionally:

	the offsets of all sub-resolutions IFDs must be referenced from the IFD of
the full-resolution plane using the SubIFDs TIFF extension tag 330 as
defined in the TIFF Tech Note 1 of the
Adobe PageMaker® 6.0 TIFF Technical Notes [https://web.archive.org/web/20180810205521/https://www.adobe.io/content/udp/en/open/standards/TIFF/_jcr_content/contentbody/download_1704706507/file.res/TIFFPM6.pdf].
The list of sub-resolution offsets must be ordered by plane size from
largest to smallest,

	the IFD offsets of pyramidal levels must neither be referenced in the primary
chain of IFDs derived from the first IFD of the TIFF file nor be referenced
in a TiffData element of the OME-XML metadata,

	the NewSubFileType TIFF tag 254 for each pyramidal level should be set to 1
to distinguish full-resolution planes from downsampled planes.

The planes of largest resolutions should be organized into tiles rather than
strips as described in the TIFF [https://www.loc.gov/preservation/digital/formats/fdd/fdd000022.shtml] specification and may be compressed using any
of the officially supported schemes including LZW, JPEG or JPEG2000.
Sub-resolution image planes may choose to use different compression algorithms
than the one used by the full resolution plane. For example the full
resolution image may use no compression or lossless compression while the
sub-resolution images use lossy compression.

While baseline TIFF may suffice for smaller pyramidal images, BigTIFF is
recommended for large images.

See also

	https://openmicroscopy.github.io/design/OME005/
	Official design proposal for the addition of sub-resolution support to the
OME-TIFF specification.

OME-TIFF example source code for common operations

This section discusses some common operations related to the OME-TIFF
format, and provides example source code in Java for performing them. We
strongly recommend you read and understand the OME-TIFF specification
before attempting to deploy any of the following code.

	Extracting a TIFF comment – demonstrates how to extract the OME-XML
comment from an OME-TIFF file.

	Modifying a TIFF comment – demonstrates how to modify an OME-XML
comment within an OME-TIFF file.

	Converting other formats to OME-TIFF – demonstrates how to convert
third-party formats to OME-TIFF.

The Bio-Formats library [https://docs.openmicroscopy.org/latest/bio-formats/about/]
provides a lot of functionality related to OME-XML and OME-TIFF, to ease
the burden of file format handling and conversions. Rather than offer
source code that performs all of the above actions on its own, we
instead offer examples that utilize Bio-Formats, for more robust and
succinct operation.

Extracting a TIFF comment

To extract a comment from a TIFF file without the aid of a TIFF library,
the following steps are required:

	Read in the 8-byte header.

	Determine if the file is a valid TIFF, and if so, whether its byte
order is big endian or little endian. Bytes 0–1 must equal “II”
(0x4949, little endian, “Intel”) or “MM” (0x4D4D, big endian,
“Motorola”).

	Check TIFF version. Bytes 2–3 must equal 42 (0x2A) or 43 (0x2B)
with the proper endianness, which are the TIFF specification or the
newer BigTIFF specification, respectively.

	If the TIFF version is 0x2A, offsets are 4 bytes (32-bit). If the
TIFF version is 0x2B, bytes 4–5 are the size of offsets in bytes
(should be 0x0008 for 8-byte 64-bit offsets, but could be
different), and bytes 6-7 are padding (should be 0x0000).

	Determine the byte offset into the file of the first IFD. For TIFF
version 0x2A, this information is stored in bytes 4–7, with the
proper endianness. For TIFF version 0x2B, this information is
stored starting at byte 8, sized according to the specified offset
size and with the proper endianness. This will be bytes 8–15 for
8-byte offsets.

	Skip to the first IFD, and read in the IFD’s header.

	Iterate through the directory entries looking for the
ImageDescription (270) tag.

	Jump to the offset given by the ImageDescription entry, and read the
number of bytes indicated by the entry.

	Convert the bytes to an ASCII string.

The Bio-Formats command line
tools [https://docs.openmicroscopy.org/latest/bio-formats/users/comlinetools/] include a
program, tiffcomment, that performs these steps using the
getComment(String) method of
TiffParser [https://github.com/openmicroscopy/bioformats/blob/master/components/formats-bsd/src/loci/formats/tiff/TiffParser.java].
You can produce a nicely formatted OME-XML string from an OME-TIFF file
with:

tiffcomment file.ome.tif | xmlindent

See also

BigTIFF file format specification [https://www.awaresystems.be/imaging/tiff/bigtiff.html]

Modifying a TIFF comment

Modifying a TIFF comment can be tricky because the length of the altered
OME-XML string is unlikely to be the same as before. As such, the IFD’s
ImageDescription directory entry must be updated to reflect the new byte
count. In addition, if the string is longer than before, it will no
longer fit at its old offset, unless the comment was at the end of the
file, so the entry’s offset might need to change as well.

The TiffSaver.overwriteIFDValue() method within Bio-Formats, efficiently
alters a directory entry with a minimum of waste. The count field of the entry
is intelligently updated to match the new length. If the new length is longer
than the old length, it appends the new data to the end of the file and
updates the offset field; if not, or if the old data is already at the end of
the file, it overwrites the old data in place.

The following program extracts comments from TIFF files, prompts the
user to alter the comments on the command line, and writes updated
comments back to the files. It requires the
Bio-Formats library [https://www.openmicroscopy.org/bio-formats/].

EditTiffComment.java [https://github.com/openmicroscopy/bioformats/blob/master/components/formats-gpl/utils/EditTiffComment.java]

The comment string is acquired using new TiffParser(f).getComment(), and
updated with

TiffSaver saver = new TiffSaver(f);
RandomAccessInputStream in = new RandomAccessInputStream(f);
saver.overwriteComment(in, xml);

To quickly edit an OME-TIFF files comment on the command line use
tiffcomment -edit filename.ome.tiff from the
Bio-Formats command line tools [https://docs.openmicroscopy.org/latest/bio-formats/users/comlinetools/].

Converting other formats to OME-TIFF

One of the major goals of Bio-Formats is to standardize the metadata
from all supported third-party formats into OME-XML. Doing so makes
conversion to OME-TIFF very straightforward—just write the pixels to
TIFF however you want (e.g. with libtiff), and store the converted
OME-XML metadata into the TIFF comment. The complicated part is doing
the conversion from proprietary third-party metadata into OME-XML—a task
that Bio-Formats greatly simplifies.

The following program converts the files given on the command line into
OME-TIFF format. It requires the Bio-Formats [https://www.openmicroscopy.org/bio-formats/] and OME-XML
Java libraries.

ConvertToOmeTiff.java [https://github.com/openmicroscopy/bioformats/blob/master/components/formats-gpl/utils/ConvertToOmeTiff.java]

The code functions by creating an ImageReader for reading the input
files’ image planes sequentially, and an OMETiffWriter for writing the
planes to OME-TIFF files on disk. The OME-XML is generated by attaching
an OMEXMLMetadata object to the reader, such that when each file is
initialized, the object is automatically populated with the converted
metadata. The OMEXMLMetadata object is then fed to the OMETiffWriter, which
extracts the appropriate OME-XML string and embeds it into the OME-TIFF file
properly.

While our ultimate goal is for the Bio-Formats metadata conversion
facility to be a reference implementation for conversion of third-party
formats into OME-XML and OME-TIFF, please be aware that the current code
is a work in progress. We would greatly value suggestions and assistance
regarding the OME-XML conversion relating to any specific format. If
there is any metadata missing or converted incorrectly, please let us
know.

See also

Exporting raw pixel data to OME-TIFF files [https://docs.openmicroscopy.org/latest/bio-formats/developers/export2.html]
and Converting files from FV1000 OIB/OIF to OME-TIFF [https://docs.openmicroscopy.org/latest/bio-formats/developers/conversion.html]

OME-TIFF sample data

This section provides some sample data in OME-TIFF format. They include data
produced from an acquisition system as well as artificial sample datasets, i.e.
designed for developer testing that illustrate some possible data
organizations, which should be useful if you are interested in implementing
support for OME-TIFF within your software.

All the OME-TIFF sample data discussed below are available from our
OME-TIFF sample images resource [https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/] and licensed under
Creative Commons Attribution 4.0 International License [https://creativecommons.org/licenses/by/4.0/]
unless specified otherwise.

Biological datasets

5D datasets

The following OME-TIFF datasets consist of tubulin histone GFP coexpressing
C. elegans embryos. Many thanks to
Josh Bembenek [https://www.bembeneklab.org/] for preparing
and imaging this sample data.

The datasets were acquired on a multiphoton workstation (2.1 GHz Athlon
XP 3200+ with 1GB of RAM) using
WiscScan [https://eliceirilab.org/software/wiscscan/]. All image
planes were collected at 512 × 512 resolution in 8-bit grayscale, with an
integration value of 2.

The files available for download have been updated to the current schema
version since their initial creation.

	Dataset (zip bundle)

	Image dimensions (XYZCT)

	Number of files

	Tubhiswt 2D [https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/tubhiswt-2D] (tubhiswt-2D.zip [https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/tubhiswt-2D.zip])

	512 × 512 × 1 × 2 × 1

	2

	Tubhiswt 3D [https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/tubhiswt-3D] (tubhiswt-3D.zip [https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/tubhiswt-3D.zip])

	512 × 512 × 1 × 2 × 20

	2

	Tubhiswt 4D [https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/tubhiswt-4D] (tubhiswt-4D.zip [https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/tubhiswt-4D.zip])

	512 × 512 × 10 × 2 × 43

	86

Plate

Two OME-TIFF datasets representative of the
High Content Screening section of the
OME Data Model, derived from a 384 wells plate of the BBBC017 image set
available from the
Broad Bioimage Benchmark Collection [https://data.broadinstitute.org/bbbc/].

	Dataset

	Image dimensions (XYZCT)

	Provenance

	Copyright

	Single file OME-TIFF [https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/BBBC017/single-file]

	512 × 512 × 1 × 3 × 1

	BBBC017 [https://data.broadinstitute.org/bbbc/BBBC017/]

	CC-BY-NC-SA 3.0 [https://creativecommons.org/licenses/by-nc-sa/3.0]

	Multi-file OME-TIFF [https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/BBBC017/multi-file]

	512 × 512 × 1 × 3 × 1

	BBBC017 [https://data.broadinstitute.org/bbbc/BBBC017/]

	CC-BY-NC-SA 3.0 [https://creativecommons.org/licenses/by-nc-sa/3.0]

See Ljosa V, Sokolnicki KL, Carpenter AE (2012). Annotated high-throughput microscopy image sets for validation. Nature Methods 9(7):637 [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3627348/].

Note

An OME-TIFF file representative of the same plate had been previously generated and made
available under NIRHTa-001.ome.tiff [https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/BBBC/NIRHTa-001.ome.tiff]. Although
the file is syntactically valid, the plate layout is incorrect due to a conversion issue.
This file should be considered as deprecated and superseded by the two representative plate
examples described above.

ROI

An OME-TIFF dataset representative of the ROI
section of the OME Data Model, derived from the public
MitoCheck [https://www.mitocheck.org/] project.

	Dataset

	Image dimensions (XYZCT)

	Provenance

	Copyright

	00001_01.ome.tiff [https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/MitoCheck/00001_01.ome.tiff]

	1344 × 1024 × 1 × 1 × 93

	IDR [https://idr.openmicroscopy.org/search/?query=Name:mitocheck]

	Public Domain [https://creativecommons.org/publicdomain/mark/1.0/]

See Neumann B et al. (2010). Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes. Nature 464(7289):721 [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3108885/].

Sub-resolutions

A set of OME-TIFF datasets representative of the Sub-resolutions
section of the OME-TIFF specification were derived from a few large X Y images.

	Dataset

	Image dimensions (XYZCT)

	Notes

	Provenance

	Copyright

	Leica-1.ome.tiff [https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/sub-resolutions/Brightfield/Leica-1/Leica-1.ome.tiff]

	36832 × 38432 × 1 × 3 × 1

	WSI, 2 RGB images

	OpenSlide [http://openslide.cs.cmu.edu/download/openslide-testdata/Leica/]

	Public Domain [https://creativecommons.org/publicdomain/mark/1.0/]

	Leica-2.ome.tiff [https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/sub-resolutions/Brightfield/Leica-2/Leica-2.ome.tiff]

	39168 × 26048 × 1 × 3 × 1

	WSI, 5 RGB images

	OpenSlide [http://openslide.cs.cmu.edu/download/openslide-testdata/Leica/]

	Public Domain [https://creativecommons.org/publicdomain/mark/1.0/]

	LuCa-7color_Scan1.ome.tiff [https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/sub-resolutions/Fluorescence/LuCa-7color_Scan1.ome.tiff]

	24960 × 34560 × 1 × 5 × 1

	WSI, multi-channel, fluorescence

	PerkinElmer [http://www.perkinelmer.com/]

	CC-BY 4.0 [https://creativecommons.org/licenses/by/4.0]

	BGal_000438_frames.ome.tiff [https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/sub-resolutions/EM/BGal_000438_frames.ome.tiff]

	7676 × 7420 × 38 × 1 × 1

	EM, Floating-point

	EMPIAR [https://www.ebi.ac.uk/pdbe/emdb/empiar/]

	Public Domain [https://creativecommons.org/publicdomain/mark/1.0/]

	retina_large.ome.tiff [https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/sub-resolutions/Z-stack/retina_large.ome.tiff]

	2048 × 1567 × 64 × 2 × 1

	Multi-Z stack

	Bitplane [http://www.bitplane.com]

	CC-BY 4.0 [https://creativecommons.org/licenses/by/4.0]

Artificial datasets

5D datasets

All datasets in the following table are single OME-TIFF files generated using
Bio-Formats loci.formats.tools.MakeTestOmeTiff. Each plane is labeled
according to its dimensional position for easy testing.

	Name

	Image dimensions (XYZCT)

	Available extensions

	Single channel

	439 × 167 × 1 × 1 × 1

	ome.tif [https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/bioformats-artificial/single-channel.ome.tif], ome.tiff [https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/bioformats-artificial/single-channel.ome.tiff], ome.tf8 [https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/bioformats-artificial/single-channel.ome.tf8], ome.btf [https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/bioformats-artificial/single-channel.ome.btf], ome.tf2 [https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/bioformats-artificial/single-channel.ome.tf2]

	Multi channel

	439 × 167 × 1 × 3 × 1

	ome.tif [https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/bioformats-artificial/multi-channel.ome.tif], ome.tiff [https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/bioformats-artificial/multi-channel.ome.tiff], ome.tf8 [https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/bioformats-artificial/multi-channel.ome.tf8], ome.btf [https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/bioformats-artificial/multi-channel.ome.btf], ome.tf2 [https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/bioformats-artificial/multi-channel.ome.tf2]

	Z series

	439 × 167 × 5 × 1 × 1

	ome.tif [https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/bioformats-artificial/z-series.ome.tif], ome.tiff [https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/bioformats-artificial/z-series.ome.tiff], ome.tf8 [https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/bioformats-artificial/z-series.ome.tf8], ome.btf [https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/bioformats-artificial/z-series.ome.btf], ome.tf2 [https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/bioformats-artificial/z-series.ome.tf2]

	Time series

	439 × 167 × 1 × 1 × 7

	ome.tif [https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/bioformats-artificial/time-series.ome.tif], ome.tiff [https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/bioformats-artificial/time-series.ome.tiff], ome.tf8 [https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/bioformats-artificial/time-series.ome.tf8], ome.btf [https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/bioformats-artificial/time-series.ome.btf], ome.tf2 [https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/bioformats-artificial/time-series.ome.tf2]

	Multi channel Z series

	439 × 167 × 5 × 3 × 1

	ome.tif [https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/bioformats-artificial/multi-channel-z-series.ome.tif], ome.tiff [https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/bioformats-artificial/multi-channel-z-series.ome.tiff], ome.tf8 [https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/bioformats-artificial/multi-channel-z-series.ome.tf8], ome.btf [https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/bioformats-artificial/multi-channel-z-series.ome.btf], ome.tf2 [https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/bioformats-artificial/multi-channel-z-series.ome.tf2]

	Multi channel time series

	439 × 167 × 1 × 3 × 7

	ome.tif [https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/bioformats-artificial/multi-channel-time-series.ome.tif], ome.tiff [https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/bioformats-artificial/multi-channel-time-series.ome.tiff], ome.tf8 [https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/bioformats-artificial/multi-channel-time-series.ome.tf8], ome.btf [https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/bioformats-artificial/multi-channel-time-series.ome.btf], ome.tf2 [https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/bioformats-artificial/multi-channel-time-series.ome.tf2]

	4D series

	439 × 167 × 5 × 1 × 7

	ome.tif [https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/bioformats-artificial/4D-series.ome.tif], ome.tiff [https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/bioformats-artificial/4D-series.ome.tiff], ome.tf8 [https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/bioformats-artificial/4D-series.ome.tf8], ome.btf [https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/bioformats-artificial/4D-series.ome.btf], ome.tf2 [https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/bioformats-artificial/4D-series.ome.tf2]

	Multi channel 4D series

	439 × 167 × 5 × 3 × 7

	ome.tif [https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/bioformats-artificial/multi-channel-4D-series.ome.tif], ome.tiff [https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/bioformats-artificial/multi-channel-4D-series.ome.tiff], ome.tf8 [https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/bioformats-artificial/multi-channel-4D-series.ome.tf8], ome.btf [https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/bioformats-artificial/multi-channel-4D-series.ome.btf], ome.tf2 [https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/bioformats-artificial/multi-channel-4D-series.ome.tf2]

Modulo datasets

Sample files implementing the 6D, 7D and 8D storage are
available from the https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/modulo folder of the image downloads
resource.

	Name

	Image dimensions (XYZCT)

	Modulo description

	SPIM-ModuloAlongZ.ome.tiff [https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/modulo/SPIM-ModuloAlongZ.ome.tiff]

	160 × 220 × 8 × 2 × 12

	4 tiles interleaved as ModuloAlongT each recorded at 4 angles
interleaved as ModuloAlongZ

	LAMBDA-ModuloAlongZ-ModuloAlongT.ome.tiff [https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/modulo/LAMBDA-ModuloAlongZ-ModuloAlongT.ome.tiff]

	200 × 200 × 5 × 1 × 10

	excitation of 5 wavelength [Λ, big-lambda] interleaved as ModuloAlongZ,
each recorded at 10 emission wavelength ranges [λ, lambda] interleaved
as ModuloAlongT

	FLIM-ModuloAlongT-TSCPC.ome.tiff [https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/modulo/FLIM-ModuloAlongT-TSCPC.ome.tiff]

	180 × 220 × 1 × 2 × 16

	2 channels and 8 histogram bins each recorded at 2 ‘real-time’ points T,
with additional relative-time points (time relative to the
excitation pulse) interleaved as ModuloAlongT

	FLIM-ModuloAlongC.ome.tiff [https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/modulo/FLIM-ModuloAlongC.ome.tiff]

	180 × 150 × 1 × 16 × 1

	2 real channels and 8 histogram bins each recorded at 2 timepoints, with
additional relative-time points interleaved between channels as
ModuloAlongC

Multi-file OME-TIFF filesets

This section lists various examples of OME-TIFF datasets distributed across
multiple TIFF files.

The first two datasets contain a set of 18 × 24 pixel images with black and
white text on each plane giving its time, z-depth and channel. Each of the
five focal planes is saved as a separate OME-TIFF named
multifile-Zxx.ome.tiff where xx is the index of the focal plane.

The third dataset contains a plate with 4 wells at position A2, B1, B3 and C2.
The first three wells contain one field of view and the fourth well contains
2 fields of view. Each well sample is saved as a separate OME-TIFF.

	Dataset

	Image dimensions (XYZCT)

	Full metadata file*

	Partial metadata files†

	Master OME-TIFF fileset [https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/binaryonly]

	18 × 24 × 5 × 1 × 1

	multifile-Z1.ome.tiff

	multifile-Z[2-5].ome.tiff

	Companion OME-TIFF fileset [https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/companion]

	18 × 24 × 5 × 1 × 1

	multifile.companion.ome

	multifile-Z[1-5].ome.tiff

	Companion OME-TIFF plate [https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/plate-companion]

	96 × 96 × 1 × 1 × 1

	hcs.companion.ome

	well-*.ome.tiff

	*
	The full OME-XML metadata describing the whole fileset is either embedded
into an OME-TIFF or stored in a companion OME-XML file

	†
	Partial OME-XML metadata blocks are embedded into the OME-TIFF files
and refer to the file containing the full OME-XML metadata as described
in the specification.

The OME-XML format

	Extracting, processing and validating OME-XML

	OME-XML Java library

OME-XML is a file format [https://en.wikipedia.org/wiki/File_format]
for storing microscopy information (both pixels and metadata) using the
OME Data Model.

Note

OME-XML as a file format is superseded by OME-TIFF, which
is the preferred container format for image data making use of the
OME Data Model.

The purpose of OME-XML is to provide a rich, extensible way to save
information concerning microscopy experiments and the images acquired
therein, including:

	dimensional parameters defining the scope of the image pixels
(e.g. resolution, number of focal planes, number of time points, number of
channels)

	the hardware configuration used to acquire the image planes
(e.g. microscope, detectors, lenses, filters)

	the settings used with said hardware (e.g. physical size of the image
planes in microns, laser gain and offset, channel configuration)

	the person performing the experiment

	some details regarding the experiment itself, such as a description,
the type of experiment (e.g. FRET, time lapse, fluorescence lifetime)
and events occurring during acquisition (e.g. laser ablation, stage
motion)

	additional custom information you may wish to provide about your
experiment in a structured form (known as
Structured Annotations)

Features and applications

The OME-XML file serves as a convenient file format for data migration
from one site or user to another. The OME-XML file captures all image
acquisition and experimental metadata, along with the binary image data,
and packages it into an easily readable package. The
paper [https://genomebiology.biomedcentral.com/articles/10.1186/gb-2005-6-5-r47]
describing the design and implementation of the OME-XML file appeared in
Genome Biology.

Note

OME-XML files can be read by potentially any software package - you
do not need OME image management software to use OME-XML.

Some specific features of the OME-XML file format:

	OME-XML files may contain one or more sets of 5-D pixels, for example
raw data from a microscope, the deconvolved data, and a volume
rendered view.

	OME-XML files contain all the metadata associated with an image,
including the experimental (e.g. cells, genes) and acquisition
(e.g. microscope light sources, filters, detectors)
metadata.

	OME-XML Image pixels may be stored compressed directly in
XML with base64 encoding. Compression of the pixels and the metadata
is supported through widely-available patent-free compression schemes
(gzip and bzip2). OME-XML Images are addressable by plane.

	OME-XML files have a built-in mechanism for supporting arbitrary
user-defined data that can be used globally or attached to Images,
Features (objects inside Images), and Datasets. Mechanisms for
OME-compliant systems to populate databases with these user-defined
fields is part of the specification. See the
Structured Annotations XML Schema section.

The OME-XML Schema .xsd files and technical documentation are available on the
Schema pages [https://www.openmicroscopy.org/Schemas/].

Extracting, processing and validating OME-XML

Extracting the OME-XML from an OME-TIFF file

If you install the Bio-Formats command line
tools [https://docs.openmicroscopy.org/latest/bio-formats/users/comlinetools/], you can
produce a nicely formatted OME-XML string from an OME-TIFF file with:

$ tiffcomment file.ome.tif | xmlindent

Alternatively, if you have ImageMagick installed, one easy way to extract
the OME-XML embedded in the TIFF headers is to use it from the command
line:

$ identify -verbose

If you are working in C/C++, we recommend the open source
LibTIFF [http://www.libtiff.org/] library or the
OME Files C++ implementation [https://www.openmicroscopy.org/ome-files/downloads/].

If you are looking for a solution in Java, there are several options.
Bio-Formats can read OME-TIFF files, as well as convert from many
third-party formats into OME-TIFF format—see the example source code
page for specific examples. Alternatively, the open
source ImageJ [https://imagej.nih.gov/ij/] application reads
multi-page TIFF files, storing the TIFF comment into the associated
FileInfo object’s “description” field.

Processing an OME-XML block

If the XML was stored without line breaks, it can still be difficult to
read after being extracted. There are several solutions to this problem,
such as using an XML viewer or editor (web browsers work well), or
processing the XML with a SAX or DOM library.

On most Linux distributions, you can install the libxml package and use
the xmllint program:

$ xmllint --format file.xml

Here is a Perl script that uses
XML::LibXML [https://metacpan.org/pod/XML::LibXML] to
“pretty print” an XML document with appropriate whitespace:

formatxml.pl

use XML::LibXML;
$file = $ARGV[0];
$parser = XML::LibXML->new(); die "Cannot create XML parser" unless defined $parser;
$parser->validation(0);
if (defined $file) { $doc = $parser->parse_file($file); }
else { $doc = $parser->parse_fh(STDIN); } print $doc->toString(1);

Unfortunately, both xmllint and the above Perl script can be somewhat
fragile; if there are any errors or abnormalities in the XML, they
generally fail to produce any indentation. Thus, we have also written
some Java code to do the same thing; just download the
Bio-Formats command line tools [https://docs.openmicroscopy.org/latest/bio-formats/users/comlinetools/] and run:

$ xmlindent file.xml

Another option is to feed the XML into our
OME-XML Java library, which provides methods
for querying and manipulating the OME-XML (using DOM and SAX). This library is
what Bio-Formats uses to work with OME-XML.

Validating OME-XML

We have created a command line tool in Java for validating OME-XML, and
included it as part of the Bio-Formats bftools.zip download [https://www.openmicroscopy.org/bio-formats/downloads/]. Please refer to the Bio-Formats command line tools [https://docs.openmicroscopy.org/latest/bio-formats/users/comlinetools/] documentation
for more details but, in brief, you download and unzip the tools to produce a
collection of command line scripts for Unix/Mac and batch files for Windows.
The two commands we will use are:

	xmlvalid
	A command line XML validation tool

	tiffcomment
	Extracts the OME-XML block in an OME-TIFF file from the
comment in the TIFF’s first IFD entry.

All scripts require bioformats_package.jar to be downloaded into the
same directory as the command line tools. Then to validate an OME-XML file
sample.ome use:

$ xmlvalid sample.ome

This validates the XML directly.

Then to validate an OME-TIFF file sample.ome.tif use:

$ tiffcomment sample.ome.tif | xmlvalid

This extracts the OME-XML from the TIFF then passes it to the validator.
Typical successful output is:

$./xmlvalid sample.ome
Parsing schema path
http://www.openmicroscopy.org/Schemas/OME/2010-06/ome.xsd
Validating sample.ome
No validation errors found.
$

If any errors are found they are reported. When correcting errors, it is
usually best to work from the top of the file as errors higher up can cause
extra errors further down. In this example the output shows 3 errors but there
are only 2 mistakes in the file.

$./xmlvalid broken.ome
Parsing schema path
http://www.openmicroscopy.org/Schemas/OME/2010-06/ome.xsd
Validating broken.ome
cvc-complex-type.4: Attribute 'SizeY' must appear on element 'Pixels'.
cvc-enumeration-valid: Value 'Non Zero' is not facet-valid with respect
 to enumeration '[EvenOdd, NonZero]'. It must be a value from the enumeration.
cvc-attribute.3: The value 'Non Zero' of attribute 'FillRule' on element
 'ROI:Shape' is not valid with respect to its type, 'null'.
Error validating document: 3 errors found
$

Alternatively you can chose a freely available online validator
to validate your OME-XML blocks e.g. one from www.utilities-online.info [http://www.utilities-online.info/xsdvalidation] .

Another option is to use a commercial XML application such as Turbo XML
to work with and validate your OME-XML documents.

OME-XML Java library

The OME-XML Java library is a collection of Java packages for
manipulating OME-XML metadata structures. The OME-XML Java library’s
metadata processing facilities form the backbone of the
Bio-Formats [https://www.openmicroscopy.org/bio-formats/] library’s support for OME-XML conversion.

Download

The ome-xml artifacts are hosted on the
Maven Central Repository [https://search.maven.org/] under the group org.openmicroscopy and distributed under the
2-Clause BSD license [https://opensource.org/licenses/BSD-2-Clause].

Installation

To use, add ome-xml.jar to your classpath or build path.

Usage

Refer to the online API documentation [https://javadoc.io/doc/org.openmicroscopy/ome-xml/], specifically the
ome.xml.* packages. For an example of usage, see the
Screen Plate Well unit test [https://github.com/openmicroscopy/bioformats/blob/master/components/formats-bsd/test/loci/formats/utests/SPWModelMock.java].

The OMENode is the root (“OME”) node of the OME-XML. Each XML element
has its own node type (e.g. “Image” has ImageNode) with its own
accessor and mutator methods, to make navigation of the OME-XML
structure easier than it would be with a raw DOM object. However, there
are some limitations to what can be done with the API. If your
application needs access to a node’s backing DOM element to work with it
directly, you can call getDOMElement() on a node.

Source code

The OME-XML Java library is an open source project—the source code is
freely accessible via the https://github.com/ome/ome-model Git repository.

The OMERO pyramid format

The OMERO pyramid format is a way of storing very large images for easier visualization.
Currently only v1.0.0 is defined.

See also

Working with whole slide images [https://docs.openmicroscopy.org/latest/bio-formats/developers/wsi.html]

v1.0.0

The OMERO pyramid format is a TIFF [https://docs.openmicroscopy.org/latest/bio-formats/formats/tiff.html] file containing JPEG-2000 compressed image tiles. All resolutions for a tile
are encoded in the same JPEG-2000 stream, using the “decompression levels” feature of JPEG-2000.
As a result, only data types supported by the JPEG-2000 standard (uint8 and uint16) are supported.
Images with pixel type uint32, float (32-bit floating point), or double (64-bit floating point) cannot be converted to
an OMERO pyramid. Pyramid files larger than 4 gigabytes are supported, as are pyramids containing multiple channels,
Z sections, and/or timepoints.

Each pyramid contains multiple resolutions for each image plane, with each resolution stored in descending order from largest to smallest XY size.
Each resolution is half the width and height of the previous resolution. OMERO by default writes 5 resolutions, but this is an implementation
detail and not a limitation of the file format.

One IFD is required to be stored for each image plane, but every resolution for a given plane is encapsulated in that plane’s single IFD.
Additional IFDs for each resolution are not expected; any IFDs that do not represent a JPEG-2000 stream with multiple decompression
levels will be ignored.

Compliant file specification

	Compliant HCS specification

	Minimum specification

This was developed in conjunction with the April 2010 release of the
OME-XML Model and the samples have been updated to the June 2016 release.

A “compliant” specification OME file has been defined. This is not the
minimum required for the display of an image (for this, see Minimum
Specification). This is the information a file should contain to
authoritatively describe an imaging experiment, so that another person could,
with the same sample and microscope, reproduce the data recorded in the file.
Therefore, an ‘OME Compliant’ file should be as complete
as possible, but only contain metadata relevant to a specific imaging
experiment i.e. all of the fields listed below
that are relevant to the experiment should be completed. As an example,
PockelCellSetting would not be used in most wide-field microscopy
experiments, but would be mandatory for many multi-photon imaging
experiments.

Sample structure

Two samples of this structure are shown below. They were generated by
opening a propriety file (Olympus .oib and DeltaVision .dv,
respectively) in ImageJ, using the Bio-Formats plugin with the Display
OME-XML Metadata option checked. A few additional
attributes were then manually added to the files to make them compliant.

Sample structure one:

<?xml version="1.0"?>
<OME xmlns="http://www.openmicroscopy.org/Schemas/OME/2016-06"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:str="http://exslt.org/strings"
 xsi:schemaLocation="http://www.openmicroscopy.org/Schemas/OME/2016-06 http://www.openmicroscopy.org/Schemas/OME/2016-06/ome.xsd">

 <Image ID="Image:0" Name="Series 1">
 <AcquisitionDate>2008-02-06T13:43:19</AcquisitionDate>
 <Description>An example OME compliant file, based on Olympus.oib</Description>
 <Pixels DimensionOrder="XYCZT" ID="Pixels:0" PhysicalSizeX="0.207" PhysicalSizeY="0.207" SizeC="3" SizeT="16" SizeX="1024" SizeY="1024" SizeZ="1" TimeIncrement="120.1302" Type="uint16">
 <Channel EmissionWavelength="523" ExcitationWavelength="488" ID="Channel:0:0" IlluminationType="Epifluorescence" Name="CH1" SamplesPerPixel="1" PinholeSize="103.5" AcquisitionMode="LaserScanningConfocalMicroscopy"/>
 <Channel EmissionWavelength="578" ExcitationWavelength="561" ID="Channel:0:1" IlluminationType="Epifluorescence" Name="CH3" SamplesPerPixel="1" PinholeSize="127.24" AcquisitionMode="LaserScanningConfocalMicroscopy"/>
 <Channel ExcitationWavelength="488" ID="Channel:0:2" IlluminationType="Transmitted" ContrastMethod="DIC" Name="TD1" SamplesPerPixel="1" AcquisitionMode="LaserScanningConfocalMicroscopy"/>
 <BinData BigEndian="false" Length="0"/>
 </Pixels>
 </Image>
</OME>

Sample structure two:

<?xml version="1.0"?>
<OME xmlns="http://www.openmicroscopy.org/Schemas/OME/2016-06"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:str="http://exslt.org/strings"
 xsi:schemaLocation="http://www.openmicroscopy.org/Schemas/OME/2016-06 http://www.openmicroscopy.org/Schemas/OME/2016-06/ome.xsd">

 <Instrument ID="Instrument:0">
 <Detector ID="Detector:0:0" Model="COOLSNAP_HQ / ICX285" Type="CCD"/>
 <Objective ID="Objective:10002" Immersion="Oil" LensNA="1.4" Manufacturer="Olympus" NominalMagnification="100"/>
 </Instrument>
 <Image ID="Image:1" Name="example_R3D_D3D.dv">
 <AcquisitionDate>2005-01-28T13:50:08</AcquisitionDate>
 <Description>An example OME compliant file,
 based on a wide-field microscope image</Description>
 <ObjectiveSettings ID="Objective:10002" Medium="Oil" RefractiveIndex="1.52" CorrectionCollar="7"/>
 <Pixels DimensionOrder="XYCZT" ID="Pixels:1" PhysicalSizeX="0.06631" PhysicalSizeY="0.06631" PhysicalSizeZ="0.2" SizeC="3" SizeT="1" SizeX="480" SizeY="480" SizeZ="5" Type="int16">
 <Channel EmissionWavelength="457" ExcitationWavelength="360" ID="Channel:1:0" NDFilter="0.5" Name="DAPI" SamplesPerPixel="1" Fluor="DAPI" IlluminationType="Epifluorescence" ContrastMethod="Fluorescence" AcquisitionMode="WideField" Color="65535">
 <DetectorSettings Binning="1x1" Gain="0.5" ID="Detector:0:0" ReadOutRate="10.0"/>
 </Channel>
 <Channel EmissionWavelength="528" ExcitationWavelength="490" ID="Channel:1:1" NDFilter="0.0" Name="FITC" SamplesPerPixel="1" Fluor="GFP" IlluminationType="Epifluorescence" ContrastMethod="Fluorescence" AcquisitionMode="WideField" Color="16711935">
 <DetectorSettings Binning="1x1" Gain="0.5" ID="Detector:0:0" ReadOutRate="10.0"/>
 </Channel>
 <Channel EmissionWavelength="617" ExcitationWavelength="555" ID="Channel:1:2" NDFilter="0.0" Name="RD-TR-PE" SamplesPerPixel="1" Fluor="TRITC" IlluminationType="Epifluorescence" ContrastMethod="Fluorescence" AcquisitionMode="WideField" Color="-16776961">
 <DetectorSettings Binning="1x1" Gain="0.5" ID="Detector:0:0" ReadOutRate="10.0"/>
 </Channel>
 <BinData BigEndian="false" Length="0"/>
 <Plane DeltaT="0.0" ExposureTime="0.1" PositionX="3316.37" PositionY="-646.46" PositionZ="-21.496" TheC="0" TheT="0" TheZ="0"/>
 <Plane DeltaT="0.294" ExposureTime="0.1" PositionX="3316.37" PositionY="-646.46" PositionZ="-21.696" TheC="0" TheT="0" TheZ="1"/>
 <Plane DeltaT="0.587" ExposureTime="0.1" PositionX="3316.37" PositionY="-646.46" PositionZ="-21.896" TheC="0" TheT="0" TheZ="2"/>
 <Plane DeltaT="0.881" ExposureTime="0.1" PositionX="3316.37" PositionY="-646.46" PositionZ="-22.096" TheC="0" TheT="0" TheZ="3"/>
 <Plane DeltaT="1.174" ExposureTime="0.1" PositionX="3316.37" PositionY="-646.46" PositionZ="-22.296" TheC="0" TheT="0" TheZ="4"/>
 <Plane DeltaT="9.625" ExposureTime="0.3" PositionX="3316.37" PositionY="-646.46" PositionZ="-21.496" TheC="1" TheT="0" TheZ="0"/>
 <Plane DeltaT="10.12" ExposureTime="0.3" PositionX="3316.37" PositionY="-646.46" PositionZ="-21.696" TheC="1" TheT="0" TheZ="1"/>
 <Plane DeltaT="10.613" ExposureTime="0.3" PositionX="3316.37" PositionY="-646.46" PositionZ="-21.896" TheC="1" TheT="0" TheZ="2"/>
 <Plane DeltaT="11.106" ExposureTime="0.3" PositionX="3316.37" PositionY="-646.46" PositionZ="-22.096" TheC="1" TheT="0" TheZ="3"/>
 <Plane DeltaT="11.599" ExposureTime="0.3" PositionX="3316.37" PositionY="-646.46" PositionZ="-22.296" TheC="1" TheT="0" TheZ="4"/>
 <Plane DeltaT="25.447" ExposureTime="0.1" PositionX="3316.37" PositionY="-646.46" PositionZ="-21.496" TheC="2" TheT="0" TheZ="0"/>
 <Plane DeltaT="25.739" ExposureTime="0.1" PositionX="3316.37" PositionY="-646.46" PositionZ="-21.696" TheC="2" TheT="0" TheZ="1"/>
 <Plane DeltaT="26.033" ExposureTime="0.1" PositionX="3316.37" PositionY="-646.46" PositionZ="-21.896" TheC="2" TheT="0" TheZ="2"/>
 <Plane DeltaT="26.326" ExposureTime="0.1" PositionX="3316.37" PositionY="-646.46" PositionZ="-22.096" TheC="2" TheT="0" TheZ="3"/>
 <Plane DeltaT="26.619" ExposureTime="0.1" PositionX="3316.37" PositionY="-646.46" PositionZ="-22.296" TheC="2" TheT="0" TheZ="4"/>
 </Pixels>
 </Image>
</OME>

Note

The data (BinData element content) in these sample was removed for
reasons of length.

Alternative valid forms:

	would have a TiffData block instead of the BinData block
(this would be used in the header of an OME-TIFF file)

	would have a MetadataOnly block instead of the BinData
block (this would be used as a companion to one or more BinaryOnly
OME-TIFF files)

Note

A units system was added in January 2015. This sample assumes the
default unit for each value is used.

Definitions of values stored

The figure Definitions of values stored is ©2010 Linkert et al. Figure originally
published as Figure 2,
Linkert et al (2010), J. Cell Biol. 189(5):777-782
(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2878938/)

Note

AcquiredDate was renamed to AcquisitionDate in June 2012

[image: Definitions of values stored]

Definitions of values stored

©2010 Linkert et al. Figure originally published as Figure 2, Linkert et
al (2010), J. Cell Biol. 189(5):777-782

Compliant HCS specification

OME compliant HCS file specification. This was developed in conjunction
with the June 2010 release of the OME-XML Model and has been updated to the
June 2016 release.

A compliant specification for HCS OME files has been defined. This is
not the minimum required for the display of an image, that is the
Minimum Specification. This is the
information a file should contain to be useful while
conforming to the spirit of the OME projects aims.

This sample structure is based on Sample One in the
OME Compliant File Specification
(see Compliant file specification):

<?xml version="1.0" encoding="UTF-8"?>
<OME xmlns="http://www.openmicroscopy.org/Schemas/OME/2016-06"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.openmicroscopy.org/Schemas/OME/2016-06
 http://www.openmicroscopy.org/Schemas/OME/2016-06/ome.xsd">

 <Plate
 ID="Plate:1"
 Name="Control Plate"
 ColumnNamingConvention="letter"
 RowNamingConvention="number"
 Columns="12"
 Rows="8"
 >
 <Description></Description>

 <!-- repeat Well for # of wells in the plate that contain images -->
 <Well ID="Well:1" Column="0" Row="0">
 <!-- repeat WellSample for # of images taken in the well -->
 <WellSample ID="WellSample:1" Index="0">
 <!--
 if there is an image associated with this SPW:WellSample
 it is linked using an ImageRef
 -->
 <ImageRef ID="Image:0"/>
 </WellSample>
 </Well>
 </Plate>
 <!-- plus one more Plate for each Plate in this set -->

 <!-- Screen is not required -->

 <!-- The Image element follows the structure for the OME Compliant File Specification -->
 <Image ID="Image:0" Name="Series 1">
 <AcquisitionDate>2008-02-06T13:43:19</AcquisitionDate>
 <Description>An example OME compliant file, based on Olympus.oib</Description>
 <Pixels DimensionOrder="XYCZT" ID="Pixels:0"
 PhysicalSizeX="0.207" PhysicalSizeY="0.207"
 SizeC="3" SizeT="16" SizeX="1024" SizeY="1024" SizeZ="1"
 TimeIncrement="120.1302" Type="uint16">
 <Channel EmissionWavelength="523" ExcitationWavelength="488" ID="Channel:0:0"
 IlluminationType="Epifluorescence" Name="CH1" SamplesPerPixel="1"
 PinholeSize="103.5" AcquisitionMode="LaserScanningConfocalMicroscopy"/>
 <Channel EmissionWavelength="578" ExcitationWavelength="561" ID="Channel:0:1"
 IlluminationType="Epifluorescence" Name="CH3" SamplesPerPixel="1"
 PinholeSize="127.24" AcquisitionMode="LaserScanningConfocalMicroscopy"/>
 <Channel ExcitationWavelength="488" ID="Channel:0:2"
 IlluminationType="Transmitted"
 ContrastMethod="DIC" Name="TD1" SamplesPerPixel="1"
 AcquisitionMode="LaserScanningConfocalMicroscopy"/>
 <BinData BigEndian="false" Length="0"/>
 </Pixels>
 </Image>
</OME>

Alternative valid forms:

	would have a TiffData block instead of the BinData block
(this would be used in the header of an OME-TIFF file)

	would have a MetadataOnly block instead of the BinData
block (this would be used as a companion to one or more BinaryOnly
OME-TIFF files)

Note

A units system was added in January 2015. This sample assumes the
default unit for each value is used.

Minimum specification

This was developed in conjunction with the September 2009 release of the
OME-XML Model and has been updated to the June 2016 release.

A minimum specification OME file has been defined. This is best viewed
as being the minimum required for the display of an image. A sample of
the structure is:

<?xml version="1.0" encoding="UTF-8"?>
<OME xmlns="http://www.openmicroscopy.org/Schemas/OME/2016-06"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.openmicroscopy.org/Schemas/OME/2016-06
 http://www.openmicroscopy.org/Schemas/OME/2016-06/ome.xsd">
 <Image ID="Image:1" Name="Name92">
 <Pixels
 ID="Pixels:1"
 DimensionOrder="XYZCT"
 Type="int8"
 SizeX="2"
 SizeY="2"
 SizeZ="2"
 SizeC="2"
 SizeT="2">
 <BinData
 BigEndian="false"
 Compression="none"
 Length="12"
 >ZGVmYXVsdA==</BinData>
 </Pixels>
 </Image>
</OME>

Alternative valid forms:

	would have a <TiffData/> block instead of the BinData
block (this would be used in the header of an OME-TIFF file)

	would have a <MetadataOnly/> block instead of the BinData
block (this would be used as a companion to one or more BinaryOnly
OME-TIFF files)

Note

A units system was added in January 2015. This sample assumes the
default unit for each value is used.

Developer introduction

	Using OME-XML schema elements

	File compression

	Sample image files

	IDs and LSIDs in OME-XML

	The OME system of units

The OME Data Model is now decoupled from the Bio-Formats code repository and
available as a
stand-alone ome-model GitHub repository [https://github.com/ome/ome-model].

There are sample files, along with an explanation of their structure, on
the Sample image files page.

OME Model development process

The Model development process is currently being revised but we always aim to
keep the community informed of major and breaking changes in advance. See the
Contributing Developer [https://docs.openmicroscopy.org/contributing/data-model-schema.html] documentation for
further details on updating and publishing the schema.

Working with the OME Data Model

The Model Overview collection of diagrams shows the
structure and connections between different parts of the OME Model. Generated
documentation for the current version of the entire Schema [https://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome.html] is also available.

Individual parts of the model are covered in more detail in the following
sections:

	Filter And FilterSet

	Screen Plate Well - our HCS solution

	Structured Annotations

	Regions of Interest (ROIs)

Support for additional dimensions is also covered:

	6D, 7D and 8D Storage

Map Annotations, storing ‘key-value pairs’, are a type of Structured
Annotation which were introduced in the Changes for January 2015. Further
information is available in the OMERO developer documentation on
Key-value pairs [https://docs.openmicroscopy.org/latest/omero/developers/Model/KeyValuePairs.html] and a
sample OME-XML file [https://downloads.openmicroscopy.org/images/OME-XML/2016-06/mapannotation.ome.xml] is also
available.

Legacy solutions for tiled images and Single (or Selective) Plane Illumination
Microscopy (also known as Light Sheet Microscopy) are detailed in the
following sections for reference but both these methods have been superseded
by the above:

	SPIM Initial Support

	Tiled Images

The use of IDs and Life Science Identifiers is explained in this section:

	IDs and LSIDs in OME-XML

The system of units used by the model is covered in this section:

	The OME system of units

The Schema versions section shows the Model changes
with each release, helpful for those working with several versions of the OME
Model, for example to support the loading/saving of a variety of files.

	The current major release - see Changes For June
2016.

For further information, see the
OME Data Model [https://docs.openmicroscopy.org/latest/omero/developers/index.html#the-ome-data-model] section
in the OMERO developer documentation.

Working with OME-XML

In some cases, it is useful to extract specific parameters or tweak
certain values in a dataset’s OME-XML metadata block. Further guidance on
Using OME-XML schema elements is available, but below is a brief example of the
OMEXMLMetadata class (which implements the MetadataStore and
MetadataRetrieve interfaces) to greatly simplify OME-XML-related
development tasks.

The following program edits the “image name” metadata value for the file
given on the command line. It requires the Bio-Formats [https://www.openmicroscopy.org/bio-formats/] and
OME-XML Java libraries.

EditImageName.java [https://github.com/openmicroscopy/bioformats/blob/master/components/formats-gpl/utils/EditImageName.java]

As in the ConvertToOmeTiff.java example in OME-TIFF example source code for common operations, we attach an
OME-XML MetadataStore object to the reader to extract OME-XML metadata from
the input file. We obtain the current image name (if any) by calling the
omexmlMeta.getImageName(0) method. The zero indicates the Image within
the OME-XML block we are interested in; in this case, we are
asking for the name of the first Image.

After updating the name somehow (in our case, reversing the string), we
write the updated name back into the metadata structure via a call to
omexmlMeta.setImageName(name, 0). Once again the zero indicates that we
wish to update the first Image.

Lastly, the
loci.formats.services.OMEXMLService [https://github.com/openmicroscopy/bioformats/blob/master/components/formats-api/src/loci/formats/services/OMEXMLService.java]
class contains a number of useful methods for working with Bio-Formats
metadata objects (i.e. MetadataStore and MetadataRetrieve
implementations), including the getOMEXML method for easily extracting
an OME-XML string from a MetadataRetrieve object (which we utilize
above), as well as the convertMetadata method for transcoding between
metadata object implementations. You can obtain an OMEXMLService object
as follows:

ServiceFactory factory = new ServiceFactory();
OMEXMLService service = factory.getInstance(OMEXMLService.class);

Additional tools

The xsd-fu code generator digests the OME data model schema and
produces an object oriented Java infrastructure to ease working with an XML
DOM tree.

See Using OME-XML schema elements for further guidance on how to use OME schema
elements in XML files.

Using OME-XML schema elements

This sections explains how to use OME schema elements in your own XML files.

Note

The correct attribution for work derived from our schema files under the
Creative Commons licence is:
“This work is derived in part from the OME specification.
Copyright (C) 2002-2017 Open Microscopy Environment”

We encourage people to make use of the OME Data Model as a
whole by using the OME-XML and OME-TIFF formats directly. If you need to
store additional user-specific data, the correct approach is to embed it
within the OME Data Model using Structured Annotations. These provide a
powerful and flexible way of storing your own custom data alongside the
OME model metadata, while still maintaining full compatibility with OME-XML
and OME-TIFF files, ensuring your file can be read by any application
supporting these formats.

If this approach will not work for you, we would encourage you to
contact us via the forums [https://www.openmicroscopy.org/community/] and mailing lists [http://lists.openmicroscopy.org.uk/mailman/listinfo/] as
we may be able to help you structure your additions so compatibility can be
maintained. Fully compatible and exchangeable files is what this project all
is about, so we try to support this as much as we can.

If there is still no possible approach for your data that can maintain
compatibility with OME-XML or OME-TIFF, then what follows is the best
practice for this situation.

Things to avoid

	Adding arbitrary items to the OME Model and still calling it OME-XML
or OME-TIFF

We cannot stress enough that this is a very bad approach! If you
simply insert your own custom nodes at arbitrary points within the
XML document, you will produce a broken/invalid OME-XML or OME-TIFF
file. As the outer wrapping looks like an OME file, people will
expect it to work like an OME file. Applications are likely to fail to
import the file as they will produce an error as they
encounter your additional XML elements. This will frustrate end users
and is likely to produce reports of broken applications. These tend
to ultimately propagate back to our development team and we have to
investigate, which eats into the time we have available to work on
new features and formats.

	Adding or removing arbitrary items to/from the OME Model by copying
our structure and calling it something else

This is also not a good approach. If you copy the OME Model and
then make changes (whether by deletion or addition) you are also
producing a broken/invalid file, even if you call it something else.
We have defined parts of the model that can be omitted (marked as
optional in the schema), and defined points where additions can be
made (inside the Structured Annotations). It is important to us that
we have some control over additions and omissions as it allows us to
produce a format that has the widest compatibility. Even though the
specifications we produce are now released under a less
restrictive license, we do not encourage this approach. We want anyone
who encounters an OME node in an XML document to be able to trust
its structure, as well as validate and parse it.

	A ‘pick and mix’ by copying our structure

While we have changed the licence the schema files for the OME Model
are released under to allow this approach, we would not encourage
this. You should not need to copy pieces of our definitions and
place them directly in your schema documents.

Direct copying of our structure is not necessary as XML already has a
method of including items from another schema, see below. From
our point of view this is important as it allows us to control which
parts of our model can be used as stand-alone objects in others’ work.

Correct approaches

If you have to define your own schema that will make use of our OME
model, there are two approaches:

	Wrapping our entire OME Model in your custom model

The entire OME Model, when used in an instance document, is
completely contained inside the <OME> node. It is possible to
include a complete <OME> node from the OME schema within your own
custom XML node. While this does not maintain direct compatibility
with the OME-XML and OME-TIFF file formats, it keeps all of the OME
Model data together as a single block, that can be easily extracted
from your custom XML nodes and passed to a standard OME-XML parser
for it to interpret. It only takes a single line of XML Schema
Description Language to include the whole model like this.

We would always see this wrapping of the entire OME model as the
best approach to take if you have to define your own custom model. It
is also the best way of future-proofing yourself, as an <OME> node
included like this will be easier to upgrade to newer schema
releases using our standard transform.

	A ‘pick and mix’ by referencing parts of our structure

The least desirable valid approach is to individually include small
independent parts of the model. Any of the items defined at the top
level of the OME schema may be included individually within your
custom model. If you take this approach, you must understand that
including a node also includes those nodes below it, i.e. including
LightSource also includes Laser, Arc etc. This approach does let
you select individual parts of our OME model to include, but also
lets us control which parts of the model are available for inclusion.
Any reading/writing code for OME model pieces stored in this form
will have to be custom written, as standard OME model parsers will not
be able to process the pieces.

Note

With either of these approaches please acknowledge our work by
including in the appropriate place in your software or project
documentation:
“This work is derived in part from the OME specification.
Copyright (C) 2002-2017 Open Microscopy Environment”

Worked examples

Here are a few examples of how to define a link to the OME model from
within your custom schema file and instance documents.

sample-third-party.xml

This is an instance document - the xml file that
contains your data and is structured to conform to your custom
schema specification:

<?xml version="1.0" encoding="UTF-8"?>
<CustomTag
 xmlns="http://www.example.org/SampleThirdPartySchema/2013-01"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.example.org/SampleThirdPartySchema/2013-01
 file:sample-third-party.xsd">

 <YourNodes>
 <With your="attributes"/>
 </YourNodes>

 <!-- Insert an OME node from the 2016-06 version of our schema -->
 <OME xmlns="http://www.openmicroscopy.org/Schemas/OME/2016-06"
 xsi:schemaLocation="http://www.openmicroscopy.org/Schemas/OME/2016-06
 http://www.openmicroscopy.org/Schemas/OME/2016-06/ome.xsd"
 >
 <Image ID="Image:1">
 <AcquisitionDate>2010-02-23T12:51:30</AcquisitionDate>
 <Pixels ID="Pixels:1" DimensionOrder="XYZCT" Type="uint8" SizeX="1" SizeY="1" SizeZ="1"
 SizeT="1" SizeC="1">
 <MetadataOnly/>
 </Pixels>
 </Image>
 </OME>
 <!-- Finish the OME node, and continue with your custom schema -->

 <MoreOfYourNodes></MoreOfYourNodes>
</CustomTag>

This file has <YourNodes> followed by the <OME> node, then
<MoreOfYourNodes>. Apart from the xml namespace and schema location
attributes on the <OME> node, the file is the same as though the OME
model was part of your custom namespace.

sample-third-party.xsd

In order to define the easy-to-use structure described in the
sample-third-party.xml file, you need to add
three things (marked ****) to your schema specification document:

<?xml version="1.0" encoding="UTF-8"?>

<!-- **** Define the OME namespace for your schema on the <schema> node **** -->
<xs:schema
 xmlns:OME="http://www.openmicroscopy.org/Schemas/OME/2016-06"

 xmlns="http://www.example.org/SampleThirdPartySchema/2013-01"
 targetNamespace="http://www.example.org/SampleThirdPartySchema/2013-01"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 version="1"
 elementFormDefault="qualified">

 <!-- **** Include the OME namespace to make it accessible from your schema **** -->
 <xs:import namespace="http://www.openmicroscopy.org/Schemas/OME/2016-06"
 schemaLocation="http://www.openmicroscopy.org/Schemas/OME/2016-06/ome.xsd"/>

 <xs:element name="CustomTag">
 <xs:annotation>
 <xs:documentation>
 Open Microscopy Environment
 OME Sample Third Party
 Copyright 2016 OME.
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="YourNodes">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="With">
 <xs:complexType>
 <xs:attribute name="your" use="required" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <!-- **** Reference to the OME element **** -->
 <xs:element ref="OME:OME" minOccurs="1" maxOccurs="1"/>

 <xs:element name="MoreOfYourNodes"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

sample-third-party-pieces.xml

If you want to import only a few pieces of the OME Model, this
example illustrates how to include <LightSource> and <Objective>:

<?xml version="1.0" encoding="UTF-8"?>
<CustomTag
 xmlns="http://www.example.org/SampleThirdPartySchemaPieces/2013-01"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.example.org/SampleThirdPartySchemaPieces/2013-01
 file:sample-third-party-pieces.xsd">

 <YourNodes>
 <With your="attributes"/>
 </YourNodes>

 <!-- Insert a LightSource node from the 2016-06 version of our schema -->
 <Laser xmlns="http://www.openmicroscopy.org/Schemas/OME/2016-06"
 xsi:schemaLocation="http://www.openmicroscopy.org/Schemas/OME/2016-06
 http://www.openmicroscopy.org/Schemas/OME/2016-06/ome.xsd"
 ID="LightSource:1" Type="Dye" FrequencyMultiplication="2"
 LaserMedium="CoumarinC30" PockelCell="true" Pulse="Single"
 RepetitionRate="1.3" Tuneable="true" Wavelength="640">
 <Pump ID="LightSource:4"/>
 </Laser>
 <!-- Finish the LightSource node, and continue with your custom schema -->

 <MoreOfYourNodes>

 <!-- Insert an Objective node from the 2016-06 version of our schema -->
 <Objective xmlns="http://www.openmicroscopy.org/Schemas/OME/2016-06"
 xsi:schemaLocation="http://www.openmicroscopy.org/Schemas/OME/2016-06
 http://www.openmicroscopy.org/Schemas/OME/2016-06/ome.xsd"
 ID="Objective:1" CalibratedMagnification="0.3" Correction="UV"
 Immersion="Air" Iris="true" LensNA="1.3" NominalMagnification="2"
 WorkingDistance="2.3" Manufacturer="OME-Sample" Model="Mk II"
 SerialNumber="sn-234567"/>
 <!-- Finish the Objective node, and continue with your custom schema -->

 <EvenMoreOfYourNodes></EvenMoreOfYourNodes>
 </MoreOfYourNodes>
</CustomTag>

sample-third-party-pieces.xsd

In order to define this sample-third-party-pieces.xml structure, you need to
add four lines (marked ****) to your schema specification document. The
first two lines are the same as the previous schema specification, then add
one line for each of the two included nodes:

<?xml version="1.0" encoding="UTF-8"?>

<!-- **** Define the OME namespace for your schema on the <schema> node **** -->
<xs:schema
 xmlns:OME="http://www.openmicroscopy.org/Schemas/OME/2016-06"

 xmlns="http://www.example.org/SampleThirdPartySchemaPieces/2013-01"
 targetNamespace="http://www.example.org/SampleThirdPartySchemaPieces/2013-01"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 version="1"
 elementFormDefault="qualified">

 <!-- **** Include the OME namespace to make it accessible from your schema **** -->
 <xs:import namespace="http://www.openmicroscopy.org/Schemas/OME/2016-06"
 schemaLocation="http://www.openmicroscopy.org/Schemas/OME/2016-06/ome.xsd"/>

 <xs:element name="CustomTag">
 <xs:annotation>
 <xs:documentation>
 Open Microscopy Environment
 OME Sample Third Party
 Copyright 2016 OME.
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="YourNodes">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="With">
 <xs:complexType>
 <xs:attribute name="your" use="required" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <!-- **** Reference to the LightSource element **** -->
 <xs:element ref="OME:LightSource" minOccurs="1" maxOccurs="1"/>

 <xs:element name="MoreOfYourNodes">
 <xs:complexType>
 <xs:sequence>

 <!-- **** Reference to the Objective element **** -->
 <xs:element ref="OME:Objective" minOccurs="1" maxOccurs="1"/>

 <xs:element name="EvenMoreOfYourNodes"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

Possible included objects

	
	<xs:element ref="AnnotationRef">

	<xs:element ref="Arc">

	<xs:element ref="BinaryFile">

	<xs:element ref="BinData">

	<xs:element ref="BooleanAnnotation">

	<xs:element ref="Channel">

	<xs:element ref="ChannelRef">

	<xs:element ref="CommentAnnotation">

	<xs:element ref="Dataset">

	<xs:element ref="DatasetRef">

	<xs:element ref="Detector">

	<xs:element ref="DetectorSettings">

	<xs:element ref="Dichroic">

	<xs:element ref="DichroicRef">

	<xs:element ref="DoubleAnnotation">

	<xs:element ref="Ellipse">

	<xs:element ref="FilterRef">

	<xs:element ref="Experiment">

	<xs:element ref="Experimenter">

	<xs:element ref="ExperimenterGroup">

	<xs:element ref="ExperimenterGroupRef">

	<xs:element ref="ExperimenterRef">

	<xs:element ref="ExperimentRef">

	<xs:element ref="External">

	<xs:element ref="Filament">

	<xs:element ref="FileAnnotation">

	<xs:element ref="Filter">

	<xs:element ref="FilterSet">

	<xs:element ref="FilterSetRef">

	<xs:element ref="GenericExcitationSource">

	<xs:element ref="HashSHA1">

	<xs:element ref="Image">

	<xs:element ref="ImageRef">

	<xs:element ref="ImagingEnvironment">

	<xs:element ref="Instrument">

	<xs:element ref="InstrumentRef">

	<xs:element ref="Label">

	<xs:element ref="Laser">

	<xs:element ref="Leader">

	<xs:element ref="LightEmittingDiode">

	<xs:element ref="LightPath">

	<xs:element ref="LightSource">

	<xs:element ref="LightSourceSettings">

	<xs:element ref="Line">

	<xs:element ref="ListAnnotation">

	
	<xs:element ref="LongAnnotation">

	<xs:element ref="M"> (part of the Map key/value structure)

	<xs:element ref="Map">

	<xs:element ref="MapAnnotation">

	<xs:element ref="Mask">

	<xs:element ref="MetadataOnly">

	<xs:element ref="MicrobeamManipulation">

	<xs:element ref="MicrobeamManipulationRef">

	<xs:element ref="Microscope">

	<xs:element ref="Objective">

	<xs:element ref="ObjectiveSettings">

	<xs:element ref="OME">

	<xs:element ref="Pixels">

	<xs:element ref="Plane">

	<xs:element ref="Plate">

	<xs:element ref="PlateAcquisition">

	<xs:element ref="PlateRef">

	<xs:element ref="Point">

	<xs:element ref="Polygon">

	<xs:element ref="Polyline">

	<xs:element ref="Project">

	<xs:element ref="ProjectRef">

	<xs:element ref="Pump">

	<xs:element ref="Reagent">

	<xs:element ref="ReagentRef">

	<xs:element ref="Rectangle">

	<xs:element ref="Rights">

	<xs:element ref="RightsHeld">

	<xs:element ref="RightsHolder">

	<xs:element ref="ROI">

	<xs:element ref="ROIRef">

	<xs:element ref="Screen">

	<xs:element ref="Shape">

	<xs:element ref="StageLabel">

	<xs:element ref="StructuredAnnotations">

	<xs:element ref="TagAnnotation">

	<xs:element ref="TermAnnotation">

	<xs:element ref="TiffData">

	<xs:element ref="TimestampAnnotation">

	<xs:element ref="TransmittanceRange">

	<xs:element ref="UUID">

	<xs:element ref="Well">

	<xs:element ref="WellSample">

	<xs:element ref="WellSampleRef">

	<xs:element ref="XMLAnnotation">

File compression

This section provides an analysis of several file formats (including
OME-XML and OME-TIFF) and
compression techniques.

The figures regarding various storage formats were computed from the 5D datasets before the current schema version. Thus, the byte counts between the downloadable ZIP files and the “zipped OME-TIFF” entry do not precisely match. The table below also lists the space
requirements for each dataset with various formats and compression
types.

	Dataset

	tubhiswt-2D.zip [http://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/tubhiswt-2D.zip]

	tubhiswt-3D.zip [http://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/tubhiswt-3D.zip]

	tubhiswt-4D.zip [http://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/tubhiswt-4D.zip]

	Download Size

	238,344 bytes

	4,502,202 bytes

	106,787,266 bytes

	Size (raw pixels only)

	524,288 bytes

	10,485,760 bytes

	225,443,840 bytes

	Size (OME-XML)

	314,346 bytes

	5,964,603 bytes

	142,498,355 bytes

	Size (gzipped OME-XML)

	236,708 bytes

	4,511,329 bytes

	107,788,464 bytes

	Size (zipped OME-XML)

	236,836 bytes

	4,511,457 bytes

	107,788,592 bytes

	Size (7-zipped OME-XML)

	239,052 bytes

	4,551,263 bytes

	108,708,700 bytes

	Size (OME-TIFF)

	531,384 bytes

	10,499,384 bytes

	225,874,680 bytes

	Size (OME-TIFF with LZW)

	273,190 bytes

	4,998,148 bytes

	118,517,497 bytes

	Size (zipped OME-TIFF)

	235,764 bytes

	4,446,727 bytes

	105,389,599 bytes

	Size (zipped OME-TIFF with LZW)

	264,875 bytes

	4,937,246 bytes

	116,418,287 bytes

	Size (7-zipped OME-TIFF)

	209,593 bytes

	3,891,846 bytes

	93,939,055 bytes

	Size (7-zipped OME-TIFF with LZW)

	264,292 bytes

	4,950,897 bytes

	116,567,097 bytes

Efficiency of planar access

The following table compiles our results with average plane size
computed from the numbers above, and briefly summarizes each format’s
ability to efficiently access individual image planes. We have not
performed benchmarks involving individual planar access for each
format—mostly because for many of these formats (especially zip, gzip
and 7-zip) it is quite impractical to attempt efficient access to
individual planes.

	Format

	Average plane size

	Efficiency of access to individual planes

	Raw pixels only

	Worst – 262,144 bytes

	Best – Pixels can be ripped directly from disk.

	OME-TIFF

	Worst – 262,645 bytes

	Great – IFDs identify planar offsets.

	OME-TIFF+LZW

	Good – 137,238 bytes

	Good – The plane must be decoded from LZW, but IFDs identify planar
offsets. With clever threading, each plane can be decoded while the
next is being read from disk.

	OME-XML

	Poor – 164,942 bytes

	Good – The plane must be decoded from base64, but the BinData Length
attributes can be used to derive offsets without scanning the entire
file. With clever threading, each plane can be decoded while the next
is being read from disk.

	OME-TIFF, 7-zipped

	Best – 108,692 bytes

	Poor – The appropriate OME-TIFF file must be uncompressed from the
archive.

	OME-TIFF, zipped

	Great – 122,031 bytes

	Poor – The appropriate OME-TIFF file must be uncompressed from the
archive.

	OME-TIFF+LZW, zipped

	Good – 134,834 bytes

	Poor – The appropriate OME-TIFF file must be uncompressed from the
archive, and the plane must be decoded from LZW.

	OME-TIFF+LZW, 7-zipped

	Good – 135,014 bytes

	Poor – The appropriate OME-TIFF file must be uncompressed from the
archive, and the plane must be decoded from LZW.

	OME-XML, gzipped

	Great – 124,763 bytes

	Worst – Entire dataset must be uncompressed, then the plane must be
decoded from base64.

	OME-XML, zipped

	Great – 124,764 bytes

	Worst – Entire dataset must be uncompressed, then the plane must be
decoded from base64.

	OME-XML, 7-zipped

	Great – 125,830 bytes

	Worst – Entire dataset must be uncompressed, then the plane must be
decoded from base64.

The performance penalty for accessing individual image planes from
externally compressed formats (zip, gzip, and 7-zip) is high, since the
data must be decompressed. There is little penalty for accessing them
from uncompressed OME-XML or OME-TIFF—with OME-XML, file readers can
build a list of offsets by skipping past the bulk of the BinData
characters according to the Length attribute values, and with OME-TIFF,
file readers can seek to the offsets indicated in the IFD entries.

Accessing them from an uncompressed OME-TIFF file, however, is
efficient. In addition, the TIFF format maintains compatibility with the
multitude of existing software that works with single- and multi-page
TIFF files.

Space required on disk

As shown in the table above, and the chart OME-TIFF space used, our
figures indicate that the most efficient format for space is OME-TIFF
compressed with the 7-zip [http://www.7-zip.org/] utility. Also good are
gzipped OME-XML and zipped OME-TIFF.

[image: OME-TIFF space used]

OME-TIFF space used

Uncompressed OME-TIFF format, while the least space-efficient, provides
its own advantages: it is highly compatible and provides efficient
access to individual image planes.

OME-TIFF with LZW often performs nearly as well as the externally
compressed formats (zip, gzip and 7-zip), without the performance
penalty of searching through a compressed archive. However, LZW is
noticeably less efficient to decode than uncompressed TIFF is, and LZW
is an additional requirement for client software—it may be that some
software supports uncompressed multi-page TIFF, but not LZW. Even more
unfortunate, the 7-zip algorithm appears to perform less well on
LZW-compressed OME-TIFFs than on uncompressed OME-TIFFs.

Recommendations

In conclusion, we highlight the following formats as most useful,
depending on your circumstances:

	Zipped OME-TIFF – cuts down on file size while retaining the
underlying compatibility of OME-TIFF. Use zipped OME-TIFF for wide
distribution of data to colleagues. Zip is a ubiquitous compression
format, decodable on all major operating systems. The downside is
that it typically does not compress as well as 7-zip does.

	7-zipped OME-TIFF – minimizes file size. As the most
space-efficient format, use 7-zipped OME-TIFF for archival purposes,
for transport from one OME database to another, and possibly for
online distribution if space is a major concern and your target
audience is computer-savvy enough to install 7-zip. The only
downsides are that 7-zip is less ubiquitous than zip, and compressing
a dataset with 7-zip takes longer than doing so with zip.

	OME-TIFF with LZW – provides space advantages nearly as good as
the externally compressed formats (zip, gzip, 7-zip) without
sacrificing the accessibility of TIFF, for the most part. The
downsides are that LZW takes somewhat longer to process than
uncompressed TIFF, some software does not support LZW compression,
and OME-TIFF with LZW does not shrink as much as uncompressed
OME-TIFF does with external compression techniques.

	OME-TIFF – maximizes compatibility. When actively working with
data, storing it in uncompressed OME-TIFF format provides many
options for efficient analysis and visualization. The downside is
that the data takes up more space on disk.

	OME-XML – provides metadata in a directly human-readable form. In
addition, OME-XML maximizes compatibility with XML software. The
downside is that very few image software packages support OME-XML.

Sample image files

Sample OME-XML and OME-TIFF files can be found here:
Image downloads resource [https://downloads.openmicroscopy.org/images/].

Each schema version’s samples are located in a folder named after the schema’s
date e.g. folder https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/ has samples using schema
version https://www.openmicroscopy.org/Schemas/OME/2016-06.

See the OME-TIFF sample data section for more information about the sample
TIFF files. The OME-XML files contained in the https://downloads.openmicroscopy.org/images/OME-XML
folder are named to reflect the aspects of the Data Model they demonstrate so
they should be self-explanatory.

IDs and LSIDs in OME-XML

The ID types used throughout the OME-XML model are designed to support
identifiers in two forms. Where possible, the full LSID
format should be used. If an LSID resolver is unavailable, an internal-only
form may be used.

An LSID is a Life Science Identifier. It is a Uniform Resource Name
standard, designed to allow the unique identifying of life sciences
resources across the World Wide Web in line with the Semantic Web
concept. It was designed to allow the naming or identifying of data and
associated metadata that can be stored in multiple, distributed data
stores.

For further information see https://en.wikipedia.org/wiki/LSID.

The format of a valid LSID is:

URN:LSID:<Authority>:<Namespace>:<ObjectID>[:<Version>]

In OME-XML this is implemented as

urn:lsid:<domain-name>:<element-name>:<uniqueID>

The uniqueID can be any non-whitespace characters. The domain-name is
any standard character (including Unicode) with dash and dot. It must
contain at least one dot. The version block is not required but will be
accepted if present.

The LSID specification defines the first three portions as
‘’’case-insensitive’’’, that is URN:LSID:<Authority>. The remaining
portion is ‘’’case-sensitive’’’. In OME-XML however, we assume ‘’’lower
case’’’ for the first two portions urn:lsid, for <domain-name>
any case is acceptable but lower case is recommended for consistency.
The remaining portion is case-sensitive.

The shorter internal only form is:

<element-name>:<uniqueID>

The formats are enforced by the regular expressions defined in the
schema document e.g. a sample regular expression for a Project ID is

(urn:lsid:([\w-\.]+\.[\w-\.]+)+:Project:\S+)|(Project:\S+)

Note

The regex parser in XSD is slightly non standard and assumes that
the pattern is always meant to start at the beginning of the line and
finish at the end of the line, this means that !^ and $ are not
necessary.

The simple regular expressions used provide a first level of validation
but it is possible to produce an invalid LSID that will be accepted by
the regex. As a tradeoff between complexity and usability, the
domain-name check is quite lax e.g. it will accept www.ome-xml..org as
valid despite the double dot.

Sample IDs

Valid

urn:lsid:sample.ome-xml.org:Project:1234
Project:1234

Invalid

sample.ome-xml.org:Project:1234 (domain but no protocol name)
1234 (no element name)

The OME system of units

Implementation

The ome.xsd schema file defines new type enumerations: UnitsLength,
UnitsTime, UnitsPressure, UnitsAngle, UnitsTemperature,
UnitsElectricPotential, UnitsPower and UnitsFrequency. These types are used
throughout the model. Each new unit attribute is in a pair with an existing
attribute, e.g. PinholeSize and PinholeSizeUnit. The xsd-fu
code generator then processes these attribute pairs into a single unit aware
attribute in the output java classes. The java classes make use of the types
from the new ome.units.* classes.

The classes in ome.units are inspired by but not a direct implementation of
the specification for a Units of Measurement API [http://unitsofmeasurement.github.io/unit-api/site/].

These classes have been constructed to allow for future wrapping of the
Units of Measurement API implementation developed at
https://www.eclipse.org/uomo/ if future work on that project provides a
more complete implementation.

See also

OMERO developer documentation on units [https://docs.openmicroscopy.org/latest/omero/developers/Model/Units.html]
for further details of how this aspect of the Data Model is implemented in
OMERO.

Default [https://downloads.openmicroscopy.org/images/OME-XML/2016-06/instrument-units-default.ome.xml] and
Alternate [https://downloads.openmicroscopy.org/images/OME-XML/2016-06/instrument-units-alternate.ome.xml] OME-XML
samples demonstrating the use of instrument units.

OME system of measurements

A system of measurements is defined for:

	Angle

	Electric potential (commonly called voltage)

	Frequency

	Length

	Power

	Pressure

	Temperature

	Time

Angle

Is based on the following unit:

	rad - radian (the SI unit of angle)

And from this are derived the following units:

	deg - degree

	gon - gradian

All angle units are freely convertible.

Electric potential (commonly called voltage)

Is based on the following unit:

	V - volt (the SI unit of electric potential)

And from this are derived the following units:

	All the SI range for volt from 1024 yotta (YV) to 10-24 yocto
(yV)

All electric potential units are freely convertible.

Frequency

Is based on the following unit:

	Hz - hertz (the SI unit of frequency)

And from this are derived the following units:

	All the SI range for hertz from 1024 yotta (YHz) to 10-24 yocto
(yHz)

All frequency units are freely convertible.

Length

Is based on the following units:

	m - meter (the si unit of length)

	pixel - a length measured in terms of the image pixel size

	reference frame - a length measured in terms of an arbitrary unit
based on the equipment used

And from these are derived the following units:

	All the SI range for meter from 1024 yotta (Ym) to 10-24 yocto
(ym)

	Å - ångströms

	in - inch (the Imperial/US unit of length)

	thou - thou (or mil, 1/1000 of an inch)

	li - line (1/12 of an inch)

	in - inch

	ft - foot

	yd - yard

	mi - terrestrial mile

	ua - astronomical unit - The official term is ua as the SI standard
assigned AU to absorbance unit.

	ly - light year

	pc - parsec

	pt - typography point - This unit should be limited to font sizes.

All units are freely convertible except for pixel and
reference frame, both of which are of unspecified length.

Power

Is based on the following unit:

	W - watt (the SI unit of power)

And from this are derived the following units:

	All the SI range for watt from 1024 yotta (YW) to 10-24 yocto
(yW)

All power units are freely convertible.

Pressure

Is based on the following unit:

	Pa - pascal (the si unit of pressure)

And from this are derived the following units:

	All the SI range for pascal from 1024 yotta (YPa) to 10-24 yocto (yPa)

	Mbar - mega bar

	kbar - kilo bar

	dbar - deci bar

	cbar - centi bar

	mbar - milli bar

	atm - standard atmosphere

	psi - pounds per square inch

	Torr - torr

	mTorr - milli torr

	mm Hg - millimetre of mercury

All pressure units are freely convertible.

Temperature

Is based on the following unit:

	K - kelvin (the SI unit of temperature)

And from this are derived the following units:

	°C - degree Celsius

	°F - degree Fahrenheit

	°R - degree Rankine

The degree sign and word was dropped from kelvin in 1968.
https://en.wikipedia.org/wiki/Kelvin

All temperature units are freely convertible.

Time

Is based on the following unit:

	s - second (the SI unit of time)

And from this are derived the following units:

	All the SI range for second from 1024 yotta (Ys) to 10-24 yocto (ys)

	min - minute

	h - hour

	d - day

All time units are freely convertible.

General points

Unit abbreviations

The string used for each unit is the standard abbreviation for that unit.
In a few cases these do not seem obvious but the set of abbreviations has
been chosen by the scientific community to avoid abbreviation clashes.

Unit names

The name and spelling used for each unit in long form is not defined by the
scientific community, rather the abbreviation is standardised. For example,
the unit of length with the symbol m is equally valid written as meter,
metre, metr, or metro.

The SI range of prefixes

The following unit abbreviation are defined:

	Y - 1024 - yotta

	Z - 1021 - zetta

	E - 1018 - exa

	P - 1015 - peta

	T - 1012 - tera

	G - 109 - giga

	M - 106 - mega

	k - 103 - kilo

	h - 102 - hecto

	da - 101 - deca

	d - 10-1 - deci

	c - 10-2 - centi

	m - 10-3 - milli

	µ - 10-6 - micro

	n - 10-9 - nano

	p - 10-12 - pico

	f - 10-15 - femto

	a - 10-18 - atto

	z - 10-21 - zepto

	y - 10-24 - yocto

Schema Generation information

Generated documentation for the current version of the entire
Schema [https://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome.html] is also available.

	Current Data Model overview

	Filter and FilterSet

	Screen Plate Well

	Structured Annotations

	ROI model

	6D, 7D and 8D storage

	Legacy use-case support

Current Data Model overview

The diagrams below illustrate some aspects of the model and further details
are given on the following pages. Generated documentation for the
current version of the entire Schema [https://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome.html] is also
available.

[image: Image Overview]

Image branch of the OME Schema

[image: Instrument Overview]

Instrument branch of the OME Schema

[image: LightPathFilterSet Top]

Location of Filters and Light Paths in the OME Model

[image: Project Dataset Top]

Organizational structures (Project, Dataset, Group, Experiment,
Experimenter) of the OME Model

[image: Project Dataset Ownership]

Ownership relations for Project, Dataset and Experimenter

[image: ROI Overview Standard]

Region Of Interest branch of the OME Model

[image: ScreenPlateWell Structure]

HCS structures (Screen, Plate and Well) of the OME Model

[image: Annotation Top]

StructuredAnnotation branch of the OME Model

[image: Annotation Points]

All points in the OME Model that can be Annotated

Filter and FilterSet

The filter model changed with the April 2010 release of the OME
Schema. This page provides a description of the new structures used. The
new structures are designed to work for Fluorescence Microscopy but are
flexible enough it can also work with filter configurations for most
other forms of microscopy.

Supported Objects

The schema supports the following objects:

	Dichroic
	The dichroic mirror or dichromatic beamsplitter. This is
used for the primary dichroic of the instrument. Other dichroics in
the excitation or emission path can be modeled with the Filter
object.

	Filter
	This object is used to represent any type of excitation
filter and emission/barrier filter. It contains details of the
transmittance of the filter. It can also be used to model a dichroic
mirror or dichromatic beamsplitter in the excitation or emission
path.

	FilterSet
	A FilterSet belongs to an Instrument in an OME-XML file
and has alongside it any Filters and Dichroics it refers to. It is
designed to represent a collection of filters available on a certain
instrument. It can also represent a filter cube or filter block. To
represent the set of filters used to collect an image, LightPath is a
better choice. FilterSet may contain zero or more excitation Filters,
one Dichroic, and zero or more emission Filters. No ordering of
Filters is implied. Filters and Dichroics can be reused across
multiple FilterSets. It will be normal to have a single Dichroic
that is usable with several Filter combinations.

	FilterSetRef
	These are used to attach a specific FilterSet from an
Instrument to a Channel within an Image. They allow the FilterSet to
be defined once in the instrument in an OME-XML file, and then used
multiple times within the images.

	ManufacturerSpec
	The Manufacturer spec is used by both Dichroic and
Filter to store the Manufacturer, Model, SerialNumber and LotNumber
of the optical element.

	FilterWheel
	This is a value within a Filter used to record which
holder the filter is located in. Although it is named after a wheel,
it could just as easily be a filter slider or other mechanism. These
holders allow any of their containing Filters to be automatically
selected by the microscope control software.

	LightPath
	The LightPath object is a child of Channel and is used to
represent the collection of Dichroic and Filters used to create the
Channel. FilterSet is on an Instrument granularity, LightPath on a
Channel of an Image.

Filters and Dichroics in the optical path

[image: Sample instrument light path]

Sample instrument light path

Key for figure Sample instrument light path

	The source produces a beam of light.

	A small range of wavelengths are passed through the filters in the
excitation path.

	The light is selectively reflected by the dichroic mirror to
illuminate the sample.

	The fluorphore in the sample absorbs the light from 3 and re-emits it
on a new wavelength. Some of this re-emitted light travels towards
the dichroic mirror.

	The light on the new wavelength is selectively transmitted by the
dichroic mirror.

	The wavelength of detected light is further narrowed and stray
reflections reduced by the filters in the emission path.

	The light can be optionally split by a dichroic in the emission path
to go to two, or more, detectors. This dichroic is modelled as a
Filter of type “Dichroic”.

	The split light beam can travel directly from the dichroic to a
detector.

	The beam may be further filtered before reaching a detector.

Filter data structure in OME-XML

The Filter data elements are part of the central OME Schema. The
filters are part of the Instrument block. Each instrument can contain
zero or more filters, dichroics, and filter sets. Each filter set uses
unique IDs to refer to the filters and dichroic it contains. If there
are any additional filters used with the Channels within an image, then
those filters are also defined at the instrument level, and referenced
from the channel with a LightPath element using the unique ID. The
Filters and Dichroics are both extensions of the ManufacturerSpec
element so store this common data. A filter also contains one
TransmittanceRange element that describes its optical characteristics.

[image: Where FilterSet sits in the OME Schema]

Where FilterSet sits in the OME Schema

The FilterSet contains three kinds of references, one to a dichroic ID
called DichroicRef, and two sets to filter IDs called
ExcitationFilterRef and EmissionFilterRef. Each of the three kinds are
optional. There is no distinction between a filter designed for
emission or excitation at the Filter level. The distinction is made
within the FilterSet (or LightPath) by the assignment of the filter ID
reference to either a ExcitationFilterRef or EmissionFilterRef. Not all
the objects in a FilterSet need to be used at the same time, and there is
no ordering implied within the groups of references.

The Dichroic object simply contains its unique ID and the
values it gets from extending ManufacturerSpec. In ManufacturerSpec, each
object can have a SerialNumber and/or a LotNumber. The LotNumber is more
commonly used in Filters and Dichroics so the batch of manufacture is
recorded.

The Filter object has the values it gets by extending ManufacturerSpec
and a unique ID the same as the Dichroic. It also has a Type and
a FilterWheel value. In addition to these extra values, it contains one
TransmittanceRange object. The TransmittanceRange describes the optical
characteristic of the filter and has values for the CutIn and CutOut,
along with the CutInTolerance and CutOutTolerance, all expressed in
nanometers. There is also the Transmittance of the filter expressed as a
percentage fraction.

[image: Where LightPath sits in the OME Schema]

Where LightPath sits in the OME Schema

The LightPath contains three kinds of references, one to a dichroic ID
called DichroicRef, and two sets to filter IDs called
ExcitationFilterRef and EmissionFilterRef. Each of the three kinds are
optional. There is no distinction between a filter designed for
emission or excitation at the filter level. The distinction is made
within the LightPath by the assignment of the filter ID reference to
either an ExcitationFilterRef or EmissionFilterRef. The key difference
between LightPath and FilterSet is that ALL the filters in a LightPath
have been used and their order is specified.

[image: Attributes within the Filter objects]

Attributes within the Filter objects

Sample pieces of .ome.xml files

Note

The sample sections below are taken from
https://downloads.openmicroscopy.org/images/OME-XML/2016-06/filter.ome.xml

This first example shows the Instrument side - the Filter/Dichroic/FilterSet
structure of the resulting xml.

	It defines six Filters; five are standard filters, the sixth is a
dichroic used as a filter.

	It defines two Dichroics that can represent the primary Dichroic in
an instrument.

	FilterSet:1 contains Filter:1 and/or Filter:2 for excitation,
Dichroic:1 and Filter:3 and/or Filter:4 for emission.

<FilterSet ID="FilterSet:1" Manufacturer="Ink Inc." Model="Mk 3"
 LotNumber="K753">
 <ExcitationFilterRef ID="Filter:1"/>
 <ExcitationFilterRef ID="Filter:2"/>
 <ExcitationFilterRef ID="Filter:3"/>
 <ExcitationFilterRef ID="Filter:4"/>
 <DichroicRef ID="Dichroic:1"/>
 <EmissionFilterRef ID="Filter:5"/>
 <EmissionFilterRef ID="Filter:6"/>
</FilterSet>
<FilterSet ID="FilterSet:2" Manufacturer="Ink Inc." Model="Mk 3"
 LotNumber="K753"/>
<Filter ID="Filter:1" Manufacturer="Ink Inc." Model="Medium 490"
 LotNumber="J23" Type="BandPass" FilterWheel="Disk 7">
 <TransmittanceRange Transmittance="0.80" CutIn="450" CutOut="530"/>
</Filter>
<Filter ID="Filter:2" Manufacturer="Ink Inc." Model="Medium 520"
 LotNumber="J34" Type="BandPass" FilterWheel="Disk 7">
 <TransmittanceRange Transmittance="0.75" CutIn="500" CutOut="570"/>
</Filter>
<Filter ID="Filter:3" Manufacturer="Ink Inc." Model="Medium 580"
 LotNumber="J12" Type="BandPass" FilterWheel="Disk 7">
 <TransmittanceRange Transmittance="0.85" CutIn="550" CutOut="620"/>
</Filter>
<Filter ID="Filter:4" Manufacturer="Ink Inc." Model="Medium 630"
 LotNumber="J09" Type="BandPass" FilterWheel="Disk 7">
 <TransmittanceRange Transmittance="0.90" CutIn="590" CutOut="680"/>
</Filter>
<Filter ID="Filter:5" Manufacturer="Ink Inc." Model="Output 724"
 LotNumber="J34" Type="MultiPass">
 <TransmittanceRange Transmittance="0.75" CutIn="500" CutOut="570"/>
</Filter>
<Filter ID="Filter:6" Manufacturer="Ink Inc." Model="Medium 762"
 LotNumber="J12" Type="MultiPass">
 <TransmittanceRange Transmittance="0.85" CutIn="550" CutOut="620"/>
</Filter>
<Filter ID="Filter:7" Manufacturer="Ink Inc." Model="Medium 672"
 LotNumber="J09" Type="ShortPass">
 <TransmittanceRange Transmittance="0.90" CutIn="590" CutOut="680"/>
</Filter>
<Filter ID="Filter:Dichroic:2" Model="MirrorBlock Mk II" LotNumber="M538"
 Type="Dichroic"/>
<Dichroic ID="Dichroic:1" Model="HFT 405/488/543/633"/>
<Dichroic ID="Dichroic:3" Model="MirrorBlock MK II" LotNumber="M539"/>

This second example shows the Image side - the LightPath structure of the
resulting xml.

	Channel:1 defines a LightPath that uses Filter:1 for excitation,
Dichroic:1, then Filter:2 and Filter:6 for Emission in that order.

	Channel:2 defines a LightPath that uses Filter:1 for excitation,
Dichroic:1, then Filter:2, Filter:6 and Filter:5 for Emission in that
order.

	Channel:3 references FilterSet:1, from this we do not know which of
the filters in that FilterSet were used and in which order.

	Dichroic:2 though defined above is not used by this Image.

<Image ID="Image:0" Name="405100percentsetting">
 <OME:AcquisitionDate>2008-06-19T00:39:00</OME:AcquisitionDate>
 <Description>Sample Image</Description>
 <InstrumentRef ID="Instrument:0"/>
 <ObjectiveSettings ID="Objective:0:0"/>
 <OME:Pixels ID="Pixels:1" DimensionOrder="XYCTZ" Type="int16"
 SizeX="128" SizeY="128" SizeZ="1" SizeC="2" SizeT="1">
 <Channel ID="Channel:1">
 <LightPath>
 <!-- ordered collection -->
 <ExcitationFilterRef ID="Filter:1"/>
 <ExcitationFilterRef ID="Filter:Dichroic:2"/>
 <DichroicRef ID="Dichroic:1"/>
 <EmissionFilterRef ID="Filter:5"/>
 </LightPath>
 </Channel>
 <Channel ID="Channel:2">
 <FilterSetRef ID="FilterSet:2"/>
 <LightPath>
 <EmissionFilterRef ID="Filter:6"/>
 </LightPath>
 </Channel>
 <MetadataOnly/>
 </OME:Pixels>
</Image>

Screen Plate Well

The Screen Plate Well (SPW) model is designed to support High Content
Screening (HCS). It is aimed at providing a flexible framework to organize the
images that result from such a screen and link to external systems that
contain full information about the components and products used.
Throughout the model, there are several External Identifier strings
that can be attached to support this.

The top level of the SPW model has two objects that exist side by side -
Screen and Plate. It is important to stress that Plate is
not a child of Screen, they are equals. This is necessary to cater
for the fact that while a Screen can contain many Plates, a
Plate can also be used in more than one Screen. This allows less
common scenarios where, for example, there are two screens against two
different reagent sets but only one set of control plates that are used
in common.

Reagents are children of a Screen and as such are designed to be
referenced from each Screen they are part of. It is worth covering
the exact meaning of a Reagent within SPW. The storing of detailed
information about biological reagents is beyond the scope of the OME
model. There are several other systems that are designed to handle this
type of information. What the Reagent element in SPW provides is
useful descriptions and an external reagent identifier, that can be used
to find detailed information about the reagent in another system. A side
effect of this is that any change to an external reagent requires a new
SPW reagent. This could be a change of dilution, supplier, or
lot-number.

Note

Refer to OME-XML downloads [https://downloads.openmicroscopy.org/images/OME-XML/2016-06/] to find
sample files for different combinations of Screens, Plates and Wells.

Example

Two chemical reagents, Monastrol and VX680, applied to samples in various
concentrations; Monastrol at 100, 300, and 900 nM concentrations, and VX680 at
300, 900, 2700 nM concentrations. This requires a total of 6 reagents to be
defined in the OME file:

<spw:Screen …>
 …
 <spw:Reagent ID="Reagent:001" Description="Monastrol at a 100nM concentration from XYZ Supplier" Name="Monastrol-100nM" ReagentIdentifier="R-XYZ-Mon-100-nm-00345"/>
 <spw:Reagent ID="Reagent:002" Description="Monastrol at a 300nM concentration from XYZ Supplier" Name="Monastrol-300nM" ReagentIdentifier="R-XYZ-Mon-300-nm-01245"/>
 <spw:Reagent ID="Reagent:003" Description="Monastrol at a 900nM concentration from XYZ Supplier" Name="Monastrol-900nM" ReagentIdentifier="R-XYZ-Mon-900-nm-00875"/>
 <spw:Reagent ID="Reagent:004" Description="VX680 at a 300nM concentration from XYZ Supplier" Name="VX680-300nM" ReagentIdentifier="R-XYZ-VX680-300-nm-00256"/>
 <spw:Reagent ID="Reagent:005" Description="VX680 at a 900nM concentration from XYZ Supplier" Name="VX680-900nM" ReagentIdentifier="R-XYZ-VX680-900-nm-00257"/>
 <spw:Reagent ID="Reagent:006" Description="VX680 at a 2700nM concentration from XYZ Supplier" Name="VX680-2700nM" ReagentIdentifier="R-XYZ-VX680-2700-nm-00258"/>
 …
</spw:Screen>

Elements and Attributes

Plate

ID - used by the system to identify the plate.

Name - chosen by the user to identify the plate.

Description - a free text description.

ColumnNamingConvention - the column naming convention.

Columns - the number of columns in the plate.

ExternalIdentifier - an identifier for the plate used by an
external system. This may be a barcode printed on the plate by the
manufacturer.

RowNamingConvention - the row naming convention.

Rows - the number of rows in the plate.

Status - the current state of the plate in the experiment work-flow.

WellOriginX - the X position to use for the origin of the fields
(individual images) taken in a well.

WellOriginY - the Y position to use for the origin of the fields
(individual images) taken in a well.

Reagent

ID - used by the system to identify the reagent.

Name - a short name for the reagent.

Description - a long description for the reagent.

ReagentIdentifier - a reference to an external (to OME)
representation of the Reagent. It serves as a foreign key into an external
database.

Screen

ID - used by the system to identify the screen.

Name - chosen by the user to identify the screen.

Description - a long description for the screen.

ProtocolDescription - a description of the screen protocol; may contain
very detailed information to reproduce some of that found in a screening
database.

ProtocolIdentifier - a pointer to an externally defined protocol, usually
in a screening database.

ReagentSetDescription - a description of the reagent set; may contain very
detailed information to reproduce some of that found in a screening database.

ReagentSetIdentifier - a pointer to an externally defined reagent set,
usually in a screening database/automation database.

Type - a human-readable identifier for the screen type e.g. RNAi, cDNA,
SiRNA.

PlateAcquisition

PlateAcquisition is used to describe a single acquisition run for a
plate. Since Plates are abstract, this object is used to record the set
of images acquired in a single acquisition run. The images for this run
are linked to PlateAcquisition through WellSample.

ID - used by the system to identify the plate acquisition.

Name - chosen by the user to identify the plate acquisition.

EndTime - time when the last image of this acquisition was collected.

MaximumFieldCount - the maximum number of fields (well samples) in any
well in this PlateAcquisition.

StartTime - time when the first image of this acquisition was collected

Well

A Well is a component of the Well/Plate/Screen construct to describe
screening applications. A Well has a number of WellSample elements that
link to the Images collected in this well. The ReagentRef links any
Reagents that were used in this Well. A Well is part of one or more
Plates. The origin for the row and column identifiers is the top left
corner of the plate, starting at zero.

ID - used by the system to identify the well.

Color - a marker color used to highlight the well.

Column - the column index of the well; the origin is the top left
corner of the plate with the first column of cells being column zero i.e top
left is (0,0).

ExternalDescription - a description of the externally defined identifier
for this plate.

ExternalIdentifier - a pointer to an externally defined identifier for
this plate.

Row - the row index of the well; the origin is the top left corner
of the plate with the first row of wells being row zero i.e top left is
(0,0).

Status - a human-readable identifier for the screening status e.g. empty,
positive control, negative control, control, experimental. This string is
likely to become an enumeration in future releases.

WellSample

WellSample is an individual image that has been captured within a Well.

ID - used by the system to identify the well sample.

Index - records the order of the well samples. Each index should be
unique for a given plate but they do not have to be sequential.

PositionX - the X position of the field (image) within the well relative
to the well origin defined on the Plate.

PositionY - the Y position of the field (image) within the well relative
to the well origin defined on the Plate.

Timepoint - the time-point at which the image started to be collected.

ScreenAcquisition rename

In the previous version of the SPW Model, the acquisition information was
recorded below Screen. During use, it was discovered that this did
not best reflect the way data was collected. This difference between the
structure and the collected data produced a performance bottleneck when
dealing with the large structures necessary for HCS data. The decision
was taken to rework the model to store the acquisition information on
Plate instead. The structure was moved in the model to below
Plate and renamed PlateAcquisition.

Index was also added to WellSample at this time. This
records the order of the well samples and should be unique within a
given Plate. It does not however, have to be sequential so supports
the collection of sparse datasets.

SPW Schema structure

Within the OME data model Screen, Plate and Image are top
level structures. A file can contain multiple instances of these
elements.

Each Plate can contain multiple Wells, PlateAcquisitions,
and ScreenRefs i.e. a plate can belong to multiple screens. Each
Well in turn can have one (or zero) ReagentRef, and zero or more
WellSamples. Each of the well samples defines the location of an
image within the well, and the time at which the sample started to be
collected. It also references the Image itself.

Each Screen contains multiple Reagents, and PlateRefs i.e.
a screen can use many plates. A PlateAcquisition is best viewed as a
pass over some or all of the Wells in a Plate, usually
associated with some time-point or step in a protocol. It is a
collection of individual WellSamples across the Plates collected
between two time points.

[image: SPW Schema structure]

SPW Schema structure

The dashed arrows on the structure diagram show the
inter-dependencies between the ‘’Screen’’ branch and the ‘’Plate’’
branch of the schema, as well as the ultimate link to ‘’Image’’.

[image: Screen Well Plate visualization]

Inter-dependencies of objects in the sample file structure

Structured Annotations

Structured annotations (or SAs), introduced in the
2008-09 schema,
are a general way to extend OME-XML with additional structured
information. They can express a variety of data types and linkages, and
serve as a replacement for the Custom Attributes and Semantic Type
Definitions functionality of prior schemas.

For more information on SAs from an OMERO-centric perspective, see the
OMERO page on structured
annotations [https://docs.openmicroscopy.org/latest/omero/developers/Model/StructuredAnnotations.html].

Map Annotations, storing ‘key-value pairs’, are a type of Structured
Annotation which were introduced in the Changes for January 2015. Further
information is available in the OMERO developer documentation on
Key-value pairs [https://docs.openmicroscopy.org/latest/omero/developers/Model/KeyValuePairs.html] and a
sample OME-XML file [https://downloads.openmicroscopy.org/images/OME-XML/2016-06/mapannotation.ome.xml] is also available.

The structure of the SA used in the schema is shown below,
along with all the possible attachment points in the model.

[image: StructuredAnnotation Model branch]

The StructuredAnnotation branch of the OME Model

[image: Annotation Points]

All points in the OME Model that can be Annotated

ROI model

ROIs are a top level object within the OME node of the model. This
means that they can be referred to from more than one point within the model:

	They can be referenced by an Image node.

	They can be referenced by a MicrobeamManipulation node.

	They can be standalone - we interpret this as meaning they are a
template that could be applied by the user to images.

Note

A fourth case is possible but not recommended. It is possible for
one ROI to be referenced by both an Image node and a
MicrobeamManipulation node. The problem with this is the ROI for the
MicrobeamManipulation should be fixed, but the ROI on an Image is
something that should be editable by a user. In this case, the user
can inadvertently change the ROI set during the
MicrobeamManipulation without realizing it.

[image: ROI Model Overview]

ROI Model Overview

ROI attributes and simple children

The ROI node has some basic properties attached to it:

	An ID used to reference it from the Image and MicrobeamManipulation
nodes.

	A short name for the ROI used in the user interface (optional).

	A longer description for the ROI used in the user interface
(optional).

	An annotation reference linking an annotation to this ROI (optional).

ROI complex children

The ROI node has a choice of ONE child operation node. At the moment, the
only choice is Union, meaning it is composed of the union of all its
child shapes. It is implemented as a choice so we have the option
available of adding other composition methods in the future. There are
currently no plans in place for this however.

Shape types

The shape types define the geometry and appearance of the ROI. Each
shape is a 2D object that exists within a single Z plane of an Image.
(This will change with a future version of the schema).

Shape attributes and simple children

The shape abstract type has four groups of information which are
attributes or simple children.

	General

	A short name for the Shape used in the user interface (optional).

	Links to Planes

	TheZ - the z-section this Shape is on (optional, if not specified
then all the z-sections).

	TheT - the timepoint this Shape is at (optional, if not specified
then all the timepoints).

	TheC - the channel this Shape is on (optional, if not specified
then all the channels).

	Shape Display Options

	FillColor - the color of the fill - encoded as RGBA (optional).

	FillRule - which parts of the Shape to fill (optional).

	StrokeColor - the color of the stroke (optional).

	StrokeWidth - the width of the stroke in pixels (optional). This also
has an optional length unit, StrokeWidthUnit.

	StrokeDashArray - e.g. “none”, “10 20 30 10” (optional).

	Text - a text label that can optionally be displayed on the Shape
(optional).

	FontFamily - the font family used to draw the text (optional).

	FontSize - the size of the font in points (optional). This also
has an optional length unit, FontSizeUnit.

	FontStyle - the style applied to the text (optional).

	Geometry Adjustment

	Transform - a transformation matrix represented by 6 values
(optional).

Note

More information on transforms is available in
this blog post [http://blog.openmicroscopy.org/data-model/future-plans/2016/06/20/shape-transforms/].

Shape concrete implementations

[image: Shape implementations]

Shape Implementations

The Shape abstract type has eight geometry implementations.
At the moment the choice is:

	Ellipse - specified by a centre point, a radius in the X-axis, and
a radius in the Y-axis.

	Label - specified by a start point for the baseline for the first
character.

	Line - specified by two end points, a markerStart (an arrowhead marker
applied to the start of the line) and markerEnd (an arrowhead
marker applied to the end of the line) (optional).

	Mask - specified by an upper left corner and a BinData block.

	Point - a simple x, y position.

	Polygon - specified by an array of coordinates that are connected by
straight lines that are closed, a markerStart (an arrowhead marker applied
to the start of the line) and markerEnd (an arrowhead marker applied to the
end of the line) (optional).

	Polyline - specified by an array of coordinates that are connected by
straight lines, a markerStart (an arrowhead marker applied to the start of
the line) and markerEnd (an arrowhead marker applied to the end of the
line) (optional).

	Rectangle - specified by an upper left corner and a width and height.

3D ROI

The current method of defining a ROI in three dimensions is as a Union
of Shape objects, each of which defines the geometry where that 3D ROI
would cut the 2D Plane the Shape is attached to.

6D, 7D and 8D storage

Overview

This outlines an interim storage solution for storing 6D, 7D and
8D data in our 5D structure using Z, T and C.

This has been produced as part of our transition to N-dimensional
support. It will take a large amount of work throughout the OME
specifications and OME software to move to a fully N-dimensional
approach to data storage. Given the scale and impact of the change, this
will take some time to schedule and complete.

This proposal is designed to allow people wishing to write data with 6,
7 or 8 dimensions into our model today, in a way that can be upgraded in
the future once N-dimensional support is available.

The key addition is a new XML Annotation to the Image element.

This was originally added to the pixels element but in use Image has
proved to be a better location. We recommend Image is used from now
on, but our code will also work with attachment to Pixels for backward
compatibility.

This annotation will use namespace

"openmicroscopy.org/omero/dimension/modulo"

and store information on the additional dimensions embedded in the Z, T
or C data. This annotation is optional and, if absent the model works as
it currently does in the 5D case. Also, if an application does not
understand the Modulo addition, then it can treat the data as 5D, though
the displayed results would need some interpretation.

<SA:StructuredAnnotations>
 <SA:XMLAnnotation ID="Annotation:3" Namespace="openmicroscopy.org/omero/dimension/modulo">
 <SA:Value>
 <Modulo namespace="http://www.openmicroscopy.org/Schemas/Additions/2011-09">
 <ModuloAlongZ Type="angle" Unit="degree">
 <Label>45</Label>
 <Label>90</Label>
 </ModuloAlongZ>
 <ModuloAlongT Type="lifetime" TypeDescription="TCSPC" Start="0" Step="2" End="128"/>
 <ModuloAlongC Type="phase" Start="0" Step="1" End="255"/>
 </Modulo>
 </SA:Value>
 </SA:XMLAnnotation>
</SA:StructuredAnnotations>

The three dimensions ModuloAlongZ, ModuloAlongT and ModuloAlongC each
can be specified in two ways:

	either using a specific number of labels (see ModuloAlongZ example
above)

	or using a Start, Step and End (see ModuloAlongT or ModuloAlongC
example above).

The attribute Type is Required and is drawn from the following
enumeration:

	angle

	phase

	tile

	lifetime

	lambda

	other

The OMERO clients cannot display dimensions of type other but the
OMERO server can store this data.

The attribute TypeDescription is optional. It is a simple text description of the
Type used to indicate to an application or user how the data should be interpreted.

The attribute Unit is optional. It is a simple text description.

If you are going to specify Label elements inside the dimension then
you do not need any other attributes.

If you are not using Label elements then you MUST specify the
Start and End of the range the dimension covers. The dimension
will be assumed to have values covering Start to End
INCLUSIVE. The values will be assumed to go up in steps of 1 unless
the optional Step is set to another value.

e.g. a collection of planes taken at the same timepoint but from
different angle might use:

<SA:StructuredAnnotations>
 <SA:XMLAnnotation ID="Annotation:3" Namespace="openmicroscopy.org/omero/dimension/modulo">
 <SA:Value>
 <Modulo namespace="http://www.openmicroscopy.org/Schemas/Additions/2011-09">
 <ModuloAlongZ Type="angle" Unit="degree">
 <Label>45</Label>
 <Label>90</Label>
 </ModuloAlongZ>
 </Modulo>
 </SA:Value>
 </SA:XMLAnnotation>
</SA:StructuredAnnotations>

The number of Label elements (if present) is used to devise the
number of planes in the extra dimension. This is the equivalent of the
value stored in TheX, TheY, TheZ, TheT, TheC in the
5D OME Model. If there are 2 Label``s in ``ModuloAlongZ then the
dimension stores two planes for each Z. If there are no Label
elements then Start, Step and End attributes are used to
devise the number of planes in the extra dimension. So with Start 100,
End 150 and Step 2 in ModuloAlongT then the dimension stores 26 planes
for each T.

To find the true value of Z, T or C for a plane, you need to take the 5D
value and divide it appropriately by the number of planes in the extra
dimension.

e.g. if 3 extra planes are stored for each Z plane

Number of Z Plane 5D view	True Z Plane	ModuleZ Plane
0	0	0
1	0	1
2	0	2
3	1	0
4	1	1
5	1	2
6	2	0
7	2	1
… and so on

e.g. if you have 2 extra Angle(A) planes stored for each Z plane and 3
extra Phase(P) for each T then

 Stored | Real
C1 , Z1 , T1 | C1 , Z1 , A1, T1 , P1
C2 , Z1 , T1 | C2 , Z1 , A1, T1 , P1
C1 , Z2 , T1 | C1 , Z1 , A2, T1 , P1
C2 , Z2 , T1 | C2 , Z1 , A2, T1 , P1
C1 , Z3 , T1 | C1 , Z2 , A1, T1 , P1
C2 , Z3 , T1 | C2 , Z2 , A1, T1 , P1
C1 , Z4 , T1 | C1 , Z2 , A2, T1 , P1
C2 , Z4 , T1 | C2 , Z2 , A2, T1 , P1
C1 , Z1 , T2 | C1 , Z1 , A1, T1 , P2
…
C2 , Z4 , T2 | C2 , Z2 , A2, T1 , P2
C1 , Z1 , T3 | C1 , Z1 , A1, T1 , P3
…
C2 , Z4 , T3 | C2 , Z2 , A2, T1 , P3
C1 , Z1 , T4 | C1 , Z1 , A1, T2 , P1
…
C2 , Z4 , T4 | C2 , Z2 , A2, T2 , P1
C1 , Z1 , T5 | C1 , Z1 , A1, T2 , P2
…
C2 , Z4 , T5 | C2 , Z2 , A2, T2 , P2
C1 , Z1 , T6 | C1 , Z1 , A1, T2 , P3
…
C1 , Z4 , T6 | C1 , Z2 , A2, T2 , P3
C2 , Z4 , T6 | C2 , Z2 , A2, T2 , P3

How to order the plane data

The order of the plane data is defined by the BinData or TiffData block, and
is interleaved as it would be for the 5D view of the Z plane i.e. it is
governed by the value of DimensionOrder on the Pixels element.

How to represent tiles

The Plane element stores the location of each tile.

e.g. Define four tiles 160 by 220 laid out as

| A | B |

| C | D |

A <Plane TheC="0" TheT="8" TheZ="0" PositionX="0" PositionY="0" PositionZ="0.1"/>
B <Plane TheC="0" TheT="9" TheZ="0" PositionX="160" PositionY="0" PositionZ="0.1"/>
C <Plane TheC="0" TheT="10" TheZ="0" PositionX="0" PositionY="220" PositionZ="0.1"/>
D <Plane TheC="0" TheT="11" TheZ="0" PositionX="160" PositionY="220" PositionZ="0.1"/>

Specifying the position of each plane allows tiles to either form a
mosaic as above or to overlap e.g.

| A | B |
---[E]---
| C | D |

E <Plane TheC="0" TheT="12" TheZ="0" PositionX="80" PositionY="110" PositionZ="0.1"/>

Sample files

Sample files are available in the Modulo datasets section of the OME-TIFF
sample data.

Legacy use-case support

	SPIM initial support

	Tiled images

SPIM initial support

Note

This approach is still valid but has been superseded by the
6D, 7D and 8D storage.

This proposal was put together after talks with various groups from the Single
(or Selective) Plane Illumination Microscopy (also known as Light Sheet
Microscopy) community, about how they can store data from this new and
expanding field in the OME data formats.

Rather than a new full schema release, it was a common method of storing SPIM
data in an existing schema. This was to allow users to start writing data from
their SPIM systems right away in a way that could be upgraded to a full schema
with SPIM support when it was released.

The solution below allowed the creation of valid OME-XML or OME-TIFF
files that hold the extra SPIM data. We proposed to write an XSLT
(Transform) that would upgrade these files to the schema version
with the SPIM data moved to the correct location. What is described here is a
file only solution. When the data is imported into an OMERO server,
all the data will be retained as annotations but it cannot be fitted
into the existing database model. This can result in some lost linkages
between the data. This is be highlighted below where applicable.

Location in Model

SPIM data was placed in 6 key areas in the model:

	Tiling

	Illumination objectives and Cylindrical Lenses

	Additional values for Objectives

	Additional Stage Positions

	SPIM angle

	Custom system values

Tiling

Where the SPIM data has tiled images, the existing tiling method was used (see
Tiled images).

This solution used StageLabel and the Position values on Plane to
record the location and arrangement of the individual tiles.

<Image ID="Image:0" Name="Spim Sample Tile 1 Angle 1">
 <StageLabel Name="(1,1) of 1x2" X="1.00" Y="1.00"/>
 <Pixels>
 <Plane TheZ="1" TheT="1" TheC="1" PositionX="1.03" PositionY="0.98" PositionZ="1.02"/>
…
</Image>
<Image ID="Image:1" Name="Spim Sample Tile 2 Angle 1">
 <StageLabel Name="(1,2) of 1x2" X="1.00" Y="2.00"/>
 <Pixels>
 <Plane TheZ="1" TheT="1" TheC="1" PositionX="1.03" PositionY="50.05" PositionZ="1.02"/>
…
</Image>

Illumination objectives and Cylindrical Lenses

The additional objective and other elements in the excitation light path
were stored as additional Objectives within the Instrument block.
This was already designed to support multiple Objectives.

<Objective ID="Objective:1" Immersion="Oil" LensNA="0.95" NominalMagnification="20"/>
<Objective ID="Objective:TubeLens:1" Model="OME - Tube lens 120 mm Mk1"/>
<Objective ID="Objective:Illumation:1" Model="Objective Mk2" LensNA="0.5" WorkingDistance="19800"/>

Additional values for Objectives

As the function of Objective had been expanded to encompass the
additional optical elements, some new attributes were required. These
could not be attached directly to the Objective, so were instead attached
as Annotations onto the Images that use the objectives. This was not
ideal but was required due to restrictions on which objects can have
annotations.

The definition of a single XmlAnnotation per Instrument was suggested, with
each Image using that Instrument making use of an AnnotationRef to point
at this Annotation.

The namespace of the XmlAnnotation had to be:

Namespace="ome-xml.org:additions:post2010-06:objective"

The Annotation would contain a single node that would define multiple
Objectives, each with an ID matching one of the Objectives in the
Instrument, and any additional attributes needed from the following list:

	FocalLength

	SlitAperture

	LightSheetWidth

Warning

Limitation - As the IDs of any Objective in the Instrument would not
survive import into OMERO, these values, while imported as an
annotation, would not be correctly linked.

<Image>
…
 <SA:AnnotationRef ID="Annotation:ObjectiveAdditions:1"/>
</Image>

<SA:XMLAnnotation ID="Annotation:ObjectiveAdditions:1" Namespace="ome-xml.org:additions:post2010-06:objective">
 <SA:Description>Extra attribute values for the objective objects.</SA:Description>
 <SA:Value>
 <OME-Extra:ObjectiveAttributes xmlns:OME-Extra="http://www.openmicroscopy.org/Schemas/Additions/2010-10">
 <ObjectiveAdditions ID="Objective:TubeLens:1" FocalLength="120" SlitAperture="6" LightSheetWidth="0.8"/>
 <ObjectiveAdditions ID="Objective:Illumation:1" FocalLength="25"/>
 </OME-Extra:ObjectiveAttributes>
 </SA:Value>
</SA:XMLAnnotation>

Additional Stage Positions

As there were several stages (Sample, Excitation Objective, Cylinder
lens) that could be moved on a plane by plane basis, it was
necessary to store these extra positions. It was proposed to use a collection
of StagePosition objects, stored inside an XmlAnnotation linked to Image
using an AnnotationRef.

The namespace of the XmlAnnotation must be:

Namespace="ome-xml.org:additions:post2010-06:spim:positions"

The Annotation would contain a single node that would define multiple
StagePosition objects. Each of these objects would contain:

	TheZ, TheT, TheC to define the exact plane it was for

	Name, used to identify which stage the position was e.g.
“objective_stage”, “excitation_stage”, “cylinder_stage”

	The PositionX, PositionY, PositionZ location of the stage. Not all of
these position values needed to be present.

SPIM angle

The images collected for SPIM are recorded from a number of discrete
angles. The angle for each image must be recorded. It was proposed that all
the planes for the Z, C, T of each stack of images were stored in their
correct location inside a single Image object. Multiple
Image objects would then be used, each one repressing a single angle. The
order and angle of these separate Images would then be defined by a single
XmlAnnotation which each of the Images would reference using an AnnotationRef.

The namespace of the XmlAnnotation must be:

Namespace="ome-xml.org:additions:post2010-06:spim:set"

The Annotation would contain a single <OME-Extra:SpimSet> node that
would define multiple SpimImage objects, each with an ID matching one of
the Image objects that referenced the Annotation and an additional
attribute:

	Angle

Warning

Limitation - although the IDs of any Image in the file would not
survive import into OMERO, the linkages between these images could be
maintained by adding the SpimSet annotation to each Image, as in the
example below. Once imported, the single XML annotation would be linked
to the imported images.

<Image ID="Image:0">
…
 <SA:AnnotationRef ID="Annotation:SpimSet:1"/>
</Image>
<Image ID="Image:1">
…
 <SA:AnnotationRef ID="Annotation:SpimSet:1"/>
</Image>

<SA:XMLAnnotation ID="Annotation:SpimSet:1" Namespace="ome-xml.org:additions:post2010-06:spim:set">
 <SA:Value>
 <OME-Extra:SpimSet xmlns:OME-Extra="http://www.openmicroscopy.org/Schemas/Additions/2010-10">
 <SpimImage ID="Image:0" Angle="0"/>
 <SpimImage ID="Image:1" Angle="45"/>
 </OME-Extra:SpimSet>
 </SA:Value>
</SA:XMLAnnotation>

Custom system values

At the time this was proposed, most SPIM systems were prototypes using custom
software to drive them. If these systems required additional values to be
stored in the file that do not fit within the above expansion of the OME
model, then they should use their own Annotation, probably an XML annotation
and define their own annotation namespace to use. This would be read and
imported (and upgraded) into Bio-Formats and OMERO like any other annotation.

Sample

A hand written sample file is available that illustrates how the
data can be structured. It is an OME-XML file but the broad structure of
the metadata is the same for an OME-TIFF.

2010-06/spim.ome.xml [https://downloads.openmicroscopy.org/images/OME-XML/2010-06/spim.ome.xml]

This file defines an instrument with multiple light sources and
objectives.

<Instrument ID="Instrument:SpimSampleMicroscope1">
…
<LightSource ID="LightSource:1" Model="Laser Mk1" Manufacturer="OME-Sample"
 SerialNumber="LASER-1">
…
<Objective ID="Objective:TubeLens:1" Manufacturer="OME-Sample"
 Model="OME - Tube lens 120 mm Mk1"/>

There are four image nodes each representing one SPIM angle.

<Image ID="Image:0" Name="Spim Sample Tile 1 Angle 1">
…
<Image ID="Image:1" Name="Spim Sample Tile 2 Angle 1">
…
<Image ID="Image:2" Name="Spim Sample Tile 1 Angle 2">
…
<Image ID="Image:3" Name="Spim Sample Tile 2 Angle 2">

They are connected together using a SpimSet annotation.

<SA:XMLAnnotation ID="Annotation:SpimSet:1" Namespace="ome-xml.org:additions:post2010-06:spim:set">

Each image contains two channels, one named ‘Autoflouresence’, and one
named ‘Green-OME’.

<Channel ID="Channel:0.0" Fluor="Autofluorescence" Color="-1"/>
<Channel ID="Channel:0.1" Fluor="Green-OME" Color="16711935"/>

Each image has 2 timepoints and two z-sections and is a small 6 pixel x
4 pixel image. This allows the BinData to be very small to allow you to
focus on the file structure.

<Pixels DimensionOrder="XYCZT" ID="Pixels:0:0" PhysicalSizeX="10000.0"
 PhysicalSizeY="10000.0" PhysicalSizeZ="0.0" Type="uint8" SizeC="2" SizeT="2" SizeX="6"
 SizeY="4" SizeZ="2">
…
<Bin:BinData BigEndian="false" Length="32"
 >/wCrzur//wB5oMPi/wBIbJO3AP8ePGCF</Bin:BinData>

There are extra annotations for the stage positions for each image and
the extra objective attributes for each objective.

<SA:XMLAnnotation ID="Annotation:ExtraStageLabel:1:0"
…
<SA:XMLAnnotation ID="Annotation:ExtraStageLabel:1:1"
…
<SA:XMLAnnotation ID="Annotation:ExtraStageLabel:1:2"
…
<SA:XMLAnnotation ID="Annotation:ExtraStageLabel:1:3"
…
<SA:XMLAnnotation ID="Annotation:ObjectiveAdditions:1"

The file is valid and can be opened with OMERO.importer and Bio-Formats.

Tiled images

Storing tiled images in an OME file.

Note

This approach is still valid but has been superseded by the
6D, 7D and 8D storage solution.

When you are looking at a sample that is larger than the available field
of the microscope, one approach is to acquire a number of images, moving
across the sample. These individual image pieces can then be joined
together at a later date to form an image of the entire sample.

There are two structures in the model that support the joining process:

	StageLabel - part of Image

	Position - part of Plane

The mainstay of the OME format is the 5-dimensional pixel array. In
order to maintain the integrity of this structure, the Tiling process has
to be external to the Image structure. This means that you represent the
Tiled image as a collection of Image elements. It is up to the software
loading the OME file to interpret these individual Image elements as
Tiles.

Each Image element can have a StageLabel. This is a named point in the
co-ordinates of the microscope reference frame. The StageLabel has a
Name attribute, that can store a human-readable description of the
point, as well as X, Y, and Z values for the co-ordinates. Each
co-ordinate is optional so an (X,Y) position or (X,Z) position can be
recorded if required. This is probably best thought of as the target
location for the individual tile.

During the acquisition process, the field is moved to capture each set of
pixels making up a plane of an image of the tiled image. The exact
location of the plane is recorded in the PositionX, PositionY,
PositionZ on Plane. The Position values in
Plane should correspond to the values in StageLabel but,
depending on the instrument and capture method, there may be small
discrepancies.

Note

Some systems in the past have used the Time value as a place to
store the tile number of an image. This not the correct approach in
the OME model.

[image: Tile Samples Image]

Tile Samples Image

A sample file showing the structure is:

<?xml version="1.0" encoding="UTF-8"?>
<OME xmlns="http://www.openmicroscopy.org/Schemas/OME/2012-06"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.openmicroscopy.org/Schemas/OME/2012-06
 http://www.openmicroscopy.org/Schemas/OME/2012-06/ome.xsd">
 <!-- This is a dummy file - it has no real data -->
 <!-- File to represent a tiled image aligned in a 2 by 2 grid -->
 <!-- as a collection of 4 images a, b, c, and d. -->
 <!-- 0 | 1 | 2 | -->
 <!-- - | - | - | -->
 <!-- 1 | a | b | -->
 <!-- 2 | c | d | -->
 <!-- - | - | - | -->
 <!-- First image - this will be the tile at 1,1 on the grid -->
 <Image ID="Image:a" Name="2x2 Image">
 <AcquisitionDate>2008-03-01T18:13:51.0Z</AcquisitionDate>
 <StageLabel Name="(1,1) of 2x2" X="1.00" Y="1.00"/>
 <!-- X and Y (and Z if present) are the target location -->
 <Pixels ID="Pixels:a" DimensionOrder="XYZCT" Type="uint8"
 SizeX="128" SizeY="128" SizeZ="8" SizeC="1" SizeT="3">
 <BinData xmlns="http://www.openmicroscopy.org/Schemas/BinaryFile/2012-06"
 Length="10" BigEndian="true">
 <!-- ... -->
 </BinData>
 <Plane TheZ="1" TheT="1" TheC="1" DeltaT="0.01" ExposureTime="0.004"
 PositionX="1.03" PositionY="0.98" PositionZ="1.02" >
 <!-- X, Y and Z are the actual location when the plane was acquired-->
 </Plane>
 <Plane TheZ="2" TheT="1" TheC="1" DeltaT="0.02" ExposureTime="0.004"
 PositionX="1.03" PositionY="0.98" PositionZ="1.23">
 </Plane>
 <!-- ... and so on for the other Z sections -->
 <!-- ... and then for the other Time points -->
 </Pixels>
 </Image>

 <!-- Second image - this will be the tile at 1,2 on the grid -->
 <Image ID="Image:b" Name="2x2 Image">
 <AcquisitionDate>2008-03-01T18:13:51.0Z</AcquisitionDate>
 <StageLabel Name="(1,2) of 2x2" X="1.00" Y="2.00"/>
 <!-- X and Y (and Z if present) are the target location -->
 <Pixels ID="Pixels:b" DimensionOrder="XYZCT" Type="uint8"
 SizeX="128" SizeY="128" SizeZ="8" SizeC="1" SizeT="3">
 <BinData xmlns="http://www.openmicroscopy.org/Schemas/BinaryFile/2012-06"
 Length="10" BigEndian="true">
 <!-- ... -->
 </BinData>
 <Plane TheZ="1" TheT="1" TheC="1" DeltaT="0.31" ExposureTime="0.004"
 PositionX="1.02" PositionY="2.01" PositionZ="1.01">
 <!-- X, Y and Z are the actual location when the plane was acquired-->
 </Plane>
 <Plane TheZ="2" TheT="1" TheC="1" DeltaT="0.32" ExposureTime="0.004"
 PositionX="1.02" PositionY="2.01" PositionZ="1.24">
 </Plane>
 <!-- ... and so on for the other Z sections -->
 <!-- ... and then for the other Time points -->
 </Pixels>
 </Image>

 <!-- Third image - this will be the tile at 2,1 on the grid -->
 <!-- ... -->

 <!-- Fourth image - this will be the tile at 2,2 on the grid -->
 <!-- ... -->
</OME>

An alternative valid form would have TiffData blocks instead of the
BinData blocks. This would be used in the header of an OME-TIFF
file.

Schema version information

	Transformations

	Changes for June 2016 release 2

	Changes for June 2016

	Changes for January 2015

	Changes for June 2013

	Changes for June 2012

	Changes for June 2011

	Changes for June 2010

	Changes for April 2010

	Changes for September 2009

	Changes for September 2008

	Changes for February 2008

	Changes for June 2007 release 2

	Changes for June 2007

Information on the version structure

All of the schema files released since 2007 have used a new
versioning system. This is composed of two parts, Major and Minor.

Major

The major part of a version is contained in the namespace of each
schema. This consists of the month and year the schema was first
released. The format for the new URI for the namespace will be

http://www.openmicroscopy.org/Schemas/[NameSpaceTitle]/[YearAsFourDigits]-[MonthAsTwoDigits]

This means the June 2016 major release for the OME schema uses the
namespace

http://www.openmicroscopy.org/Schemas/OME/2016-06/

and that the schema file will be located at

http://www.openmicroscopy.org/Schemas/OME/2016-006/ome.xsd

There will be a consultation period before each major release. Major releases
may include breaking changes.

Minor

In the schema element of the XSD file, there is a version attribute:

<xsd:schema xmlns="http://www.openmicroscopy.org/Schemas/OME/2016-06"
 …
 version="1"
 … >

This is used to record the minor version number of the schema. This
starts at 1 and counts up in integers (1, 2, 3 etc.) with each minor
version.

A new minor version is used for small non-breaking changes. If a change
is more significant, or would break application relying on the current
schema, then it must be a major version.

Minor versions will be released as needed.

Examples and consequences

The relationship between a major and minor version has been set up as
follows. Any file written by an application conforming to a major
version, will always continue to be valid under any minor version update
to the schema. The first releases to make use of the major and minor
system were June 2007(Major) and September 2007(Minor).
If microscope application X saves a file using the major
June 2007 version of OME-XML, then that file can be read by any
application that understands either the June 2007 major version or the
September 2007 minor version. The main consequence of this approach is
that file readers have to be kept up to date or have to be written in a
way that allows some flexibility.

An example of a minor change is the serial number in the manufacture
specification. In the June 2007 major version, a SerialNumber is
required in ManafactSpec. It was decided to make this optional as it
was not always available to a file writer. This is a minor change as the new
file can still validate whether it is present or absent.

An example of a major change is the moving of ImageRef from the SPW.xsd
file to the ome.xsd file. This change had been proposed as it is
envisaged that in the future ImageRef will be used outside the
Screen/Plate/Well model, so it belongs in the same namespace as
Image. As any reference to SPW:ImageRef would then have to
become OME:ImageRef, this causes validation errors in files
following the June 2007 schema and is therefore a new major version.

Technical schema descriptions

Auto-generated documentation is available for each release of the
schema, including information on each attribute and element. These are
published as XSD files [https://www.openmicroscopy.org/Schemas/] on the OME website. They are usually
read by XML validators and parsers but are viewable as text files.
Alternatively, you can browse the
current version of the entire Schema [https://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome.html] online.

Transforms are available which convert between the the different versions
of the schemas.

Transformations

Available transformations

	Available transforms

	Direction

	Status

	2003-FC-to-2007-06.xsl [https://www.openmicroscopy.org/Schemas/Transforms/2016-06-to-2015-01.xsl]

	upgrade

	excellent

	2003-FC-to-2008-09.xsl [https://www.openmicroscopy.org/Schemas/Transforms/2003-FC-to-2008-09.xsl]

	upgrade

	excellent

	2007-06-to-2008-02.xsl [https://www.openmicroscopy.org/Schemas/Transforms/2007-06-to-2008-02.xsl]

	upgrade

	excellent

	2007-06-to-2008-09.xsl [https://www.openmicroscopy.org/Schemas/Transforms/2007-06-to-2008-09.xsl]

	upgrade

	excellent

	2008-02-to-2008-09.xsl [https://www.openmicroscopy.org/Schemas/Transforms/2008-02-to-2008-09.xsl]

	upgrade

	excellent

	2009-09-to-2010-04.xsl [https://www.openmicroscopy.org/Schemas/Transforms/2009-09-to-2010-04.xsl]

	upgrade

	excellent

	2010-04-to-2010-06.xsl [https://www.openmicroscopy.org/Schemas/Transforms/2010-04-to-2010-06.xsl]

	upgrade

	excellent

	2010-04-to-2010-06.xsl [https://www.openmicroscopy.org/Schemas/Transforms/2010-04-to-2010-06.xsl]

	upgrade

	excellent

	2010-06-to-2011-06.xsl [https://www.openmicroscopy.org/Schemas/Transforms/2010-06-to-2011-06.xsl]

	upgrade

	excellent

	2011-06-to-2012-06.xsl [https://www.openmicroscopy.org/Schemas/Transforms/2011-06-to-2012-06.xsl]

	upgrade

	excellent

	2012-06-to-2013-06.xsl [https://www.openmicroscopy.org/Schemas/Transforms/2012-06-to-2013-06.xsl]

	upgrade

	excellent

	2013-06-to-2015-01.xsl [https://www.openmicroscopy.org/Schemas/Transforms/2013-06-to-2015-01.xsl]

	upgrade

	excellent

	2015-01-to-2016-06.xsl [https://www.openmicroscopy.org/Schemas/Transforms/2015-01-to-2016-06.xsl]

	upgrade

	excellent

	2010-06-to-2003-FC.xsl [https://www.openmicroscopy.org/Schemas/Transforms/2010-06-to-2003-FC.xsl]

	downgrade

	poor

	2010-06-to-2008-02.xsl [https://www.openmicroscopy.org/Schemas/Transforms/2010-06-to-2008-02.xsl]

	downgrade

	fair

	2011-06-to-2010-06.xsl [https://www.openmicroscopy.org/Schemas/Transforms/2011-06-to-2010-06.xsl]

	downgrade

	good

	2012-06-to-2011-06.xsl [https://www.openmicroscopy.org/Schemas/Transforms/2012-06-to-2011-06.xsl]

	downgrade

	good

	2013-06-to-2012-06.xsl [https://www.openmicroscopy.org/Schemas/Transforms/2013-06-to-2012-06.xsl]

	downgrade

	good

	2015-01-to-2013-06.xsl [https://www.openmicroscopy.org/Schemas/Transforms/2015-01-to-2013-06.xsl]

	downgrade

	good

	2016-06-to-2015-01.xsl [https://www.openmicroscopy.org/Schemas/Transforms/2016-06-to-2015-01.xsl]

	downgrade

	good

Quality of transformations

[image: Quality of transformations]

Key to quality

	poor
	the bare minimum of metadata is preserved to allow image display, all
other metadata is lost

	fair
	a portion of the metadata is preserved, at least enough to display the
image and some other data, it will be far from complete however

	good
	most information is preserved, it may be possible to do a better job
but could be difficult for technical reasons or require custom code
not just a transform

	excellent
	as much information as possible is preserved, some values can still be
lost if there are completely incompatible with the new schema

Changes for June 2016 release 2

List of the key changes made for the minor release updating the June 2016
ome-xml data model. These changes were introduced with the release of
Bio-Formats 5.2.3 in October 2016.

The new minor release of the schema has the same namespace (2016-06) and a new
version number. As a minor release, any file that validated correctly
using the last major release will also validate correctly using this new
release. Some files that failed to validate before will now be valid. It
is important to update any file readers to understand the changes.

	The version number of the ome.xsd schema is now 2.

Overview of changes

Channel

Added the following as valid values for AcquisitionMode:

	BrightField

	SweptFieldConfocal

	SPIM

Also added parsing for Laser Scan Confocal and Swept Field Confocal.

Changes for June 2016

The list of the key changes for the June 2016 major release of the
OME-XML data model. This schema release will tie in with the Bio-Formats
5.2 release.

The new major release of the schema has a new namespace and all version
numbers are reset to 1. As a major release, any file that validated
correctly using the last major release will probably not validate
correctly using this new release. Some files that failed to validate
before will now be valid. It is important to update any file readers and
writers to understand the changes.

This schema uses the new namespace:

http://www.openmicroscopy.org/Schemas/OME/2016-06/

All the schema files have been unified into a single ome.xsd file
located at this namespace. The version number of this schema file is 1.

Overview of changes

	This release will be implemented in Bio-Formats 5.2 and OMERO 5.3.

	This release introduces the concept of Folders, a new model object which may
contain Images, ROIs and other Folders, and which has a strict tree
hierarchy.

Details

	The model element Folder was added. A Folder specifies a possibly
heterogeneous collection of data and may contain other Folders, Images and
ROIs. Data may be in multiple Folders but a Folder may not be in more than
one other Folder, giving a strict tree hierarchy. The primary driver for
this addition is to allow the organization of ROI elements into hierarchical
structures (see this Folders blog post [http://blog.openmicroscopy.org/data-model/future-plans/2016/05/23/folders-upcoming/] for further discussion).

	The ROI properties ROI.Namespace, Shape.Linecap and
Shape.Visible have been dropped. This simplifies graphical aspects in
the data model in favor of more generic enumerated values independent of the
rendering framework, making it easier to implement across clients (see this
Design issue [https://github.com/ome/design/issues/19] for an
example discussion).

	The Marker enumeration has been reduced to Arrow only, dropping
Circle and Square. This affects the Line.MarkerStart,
Line.MarkerEnd, Polyline.MarkerStart and Polyline.MarkerEnd
attributes. As with the ROI property changes, these are also intended to
simplify the graphical aspects of the data model.

The following are simplifications for code generation purposes and have
no functional effects:

	The model elements LightSource and Shape have become abstract
classes, meaning they are now complexTypes in the .xsd. This
provides a more intuitive object-oriented design (e.g. Rectangle is a type
of Shape rather than Shape containing a Rectangle) and simplifies the data
representation (schema) as well as the code generation because two different
ways to model inheritance and polymorphism have been changed to one.

	The MapPairs model element has been removed as an unnecessary container
which is superseded by using the maps directly in the generated code.

	The Map model element has been made a complexType. This element was
never used directly, only as a base, so the change allows for the removal of
a redundant model object.

	xsd:appinfo has been extended to provide more detail for enumeration code
generation, in particular for units.

Upgrading and Downgrading

The XSLT transforms between January 2015 and June 2016 versions are
available here:

http://www.openmicroscopy.org/Schemas/Transforms/2015-01-to-2016-06.xsl

http://www.openmicroscopy.org/Schemas/Transforms/2016-06-to-2015-01.xsl

Changes for January 2015

The list of the key changes for the January 2015 major release of the
OME-XML data model. This schema release will tie in with the Bio-Formats
5.1 release.

The new major release of the schema has a new namespace and all version
numbers are reset to 1. As a major release, any file that validated
correctly using the last major release will probably not validate
correctly using this new release. Some files that failed to validate
before will now be valid. It is important to update any file readers and
writers to understand the changes.

The version number of all schema files is now 1, except ome.xsd which
version number is 2.

This schema uses the new namespace:

http://www.openmicroscopy.org/Schemas/[NameSpaceTitle]/2015-01/

For the OME schema

http://www.openmicroscopy.org/Schemas/OME/2015-01/

and the schema file is located at

http://www.openmicroscopy.org/Schemas/OME/2015-01/ome.xsd

Overview of changes

	This version introduces a major new system of specifying units
for the values stored as lengths, times, pressures, angles, temperatures,
electric potentials (voltages), powers and frequencies.
For more information see
the OME system of units.

	Many annotation points have been added and some removed.
Objects in the model are now directly annotatable or have a 1 to 1
relationship with an object that is.

BinaryFile

	There are no significant changes to this component.

OME

	Expanded documentation for AcquisitionDate describing supported
precision.

	Updated documentation for NDFilter to reflect usage

	
	Added Annotation points (AnnotationRef) to:
	
Instrument

Objective

Detector

Filter

Dichroic

LightPath

LightSource

	
	Added attributes to store:
	
Pixels: PhysicalSizeXUnit

Pixels: PhysicalSizeYUnit

Pixels: PhysicalSizeZUnit

Pixels: TimeIncrementUnit

Plane: DeltaTUnit

Plane: ExposureTimeUnit

Plane: PositionXUnit

Plane: PositionYUnit

Plane: PositionZUnit

Channel: PinholeSizeUnit

Channel: ExcitationWavelengthUnit

Channel: EmissionWavelengthUnit

StageLabel: XUnit

StageLabel: YUnit

StageLabel: YUnit

ImagingEnvironment: TemperatureUnit

ImagingEnvironment: AirPressureUnit

Objective: WorkingDistanceUnit

Detector: VoltageUnit

Filter: CutInUnit

Filter: CutOutUnit

Filter: CutInToleranceUnit

Filter: CutOutToleranceUnit

LightSource: PowerUnit

Laser: WavelengthUnit

Laser: RepetitionRateUnit

LightSourceSettings: WavelengthUnit

DetectorSettings: VoltageUnit

DetectorSettings: ReadOutRateUnit

	
	Removed Annotation points from:
	
Pixels: AnnotationRef

	
	Changed from int to float:
	
Channel: ExcitationWavelength

Channel: EmissionWavelength

Filter: CutIn

Filter: CutOut

Filter: CutInTolerance

Filter: CutOutTolerance

Laser: Wavelength

LightSourceSettings: Wavelength

	Added a general Map to ImagingEnvironment to store key-value pairs

	Added a new core type NonNegativeFloat

	Added a new core element Map and associated complex type MapPairs.
This in turn contains a collection of M elements that store a mapped
value, each with its associated K key attribute.

	
	Defined new enumerations with the permitted values for:
	
UnitsLength

UnitsTime

UnitsPressure

UnitsAngle

UnitsTemperature

UnitsElectricPotential

UnitsPower

UnitsFrequency

	Added a new GenericExcitationSource to light source types. This uses a
Map of key-value pairs to store metadata for a light source that cannot
be expressed as one of the other types.

OMERO

OMERO.xsd is not included in this release.

ROI

	
	Added Annotation points to:
	Shape: AnnotationRef

	
	Added attributes to store:
	ROI: StrokeWidthUnit
ROI: FontSizeUnit

SA

	Added a new MapAnnotation type. This makes use of the new
Map element from ome.xsd to store a collection of key-value pairs.

SPW

	
	Added attributes to store:
	WellOriginXUnit
WellOriginYUnit
PositionXUnit
PositionYUnit

	
	Removed Annotation points from:
	WellSample: AnnotationRef

Upgrading and Downgrading

The XSLT transforms between June 2013 and January 2015 versions are
available here:

http://www.openmicroscopy.org/Schemas/Transforms/2013-06-to-2015-01.xsl

http://www.openmicroscopy.org/Schemas/Transforms/2015-01-to-2013-06.xsl

Changes for June 2013

The list of the key changes for the June 2013 major release of the
ome-xml data model. This schema release will tie in with the Bio-Formats
5.0 release.

The new major release of the schema has a new namespace and all version
numbers are reset to 1. As a major release, any file that validated
correctly using the last major release will probably not validate
correctly using this new release. Some files that failed to validate
before will now be valid. It is important to update any file readers and
writers to understand the changes.

The version number of all schema files is now 1.

This schema uses the new namespace:

http://www.openmicroscopy.org/Schemas/[NameSpaceTitle]/2013-06/

For the OME schema

http://www.openmicroscopy.org/Schemas/OME/2013-06/

and the schema file is located at

http://www.openmicroscopy.org/Schemas/OME/2013-06/ome.xsd

Overview of changes

	This release is in step with the release of Bio-Formats 5.0 and OMERO 5.0
(FS).

BinaryFile

	There are no significant changes to this component.

OME

	Copyright information is stored in RightsHolder and RightsHeld.

	SignificantBits, Interleaved, and BigEndian attributes have been
added to Pixels.

	NominalMagnification has been altered to allow non-integer values, e.g.
0.5.

	A new type has been added to``Filter`` called Tuneable.

	Zoom and Integration have been added to DetectorSettings.

OMERO

OMERO.xsd is not included in this release.

ROI

There are no significant changes to this component.

SA

A new optional Annotator attribute has been added to the Annotation
complex type. This makes it available to all other annotation types. This
attribute is of type ExperimenterID and can be used to record who created
an annotation.
It has not been added to the OMERO database as this information is already
available through the permissions system.

SPW

There are no significant changes to this component.

Upgrading and Downgrading

The XSLT transforms between June 2012 and June 2013 versions are
available here:

http://www.openmicroscopy.org/Schemas/Transforms/2012-06-to-2013-06.xsl

http://www.openmicroscopy.org/Schemas/Transforms/2013-06-to-2012-06.xsl

Changes for June 2012

The list of the key changes for the June 2012 major release of the
ome-xml data model. This schema release will tie in with the Bio-Formats
4.4 release.

The new major release of the schema has a new namespace and all version
numbers are reset to 1. As a major release, any file that validated
correctly using the last major release will probably not validate
correctly using this new release. Some files that failed to validate
before will now be valid. It is important to update any file readers and
writers to understand the changes.

The version number of all schema files is now 1.

This schema uses the new namespace:

http://www.openmicroscopy.org/Schemas/[NameSpaceTitle]/2012-06/

For the OME schema

http://www.openmicroscopy.org/Schemas/OME/2012-06/

and the schema file is located at

http://www.openmicroscopy.org/Schemas/OME/2012-06/ome.xsd

Overview of changes

	This release is in step with release of Bio-Formats 4.4.

	It is preparation for the Major release of OMERO after 4.4.

	It includes work to allow full code generation of OME Model API direct from
the XSD files.

	It also includes almost full synchronization of the OME Model with the
OMERO Database structure.

	The direction of references between Screen, Plate and Well, and between
Project, Dataset and Image, have been reversed.

	The ROI model has been majorly reworked.

	Pixels has been DEPRECATED, but is still required at present.

	OTF and all associated objects have been REMOVED.

General changes

	All colors are now stored as new type Color.

	The default value for all colors is now solid white (due to legacy
color default it was totally transparent red).

	appinfo blocks for xsd-fu have been added to specify plurals.

	appinfo blocks for xsd-fu have been added to specify abstract
objects.

BinaryFile

	The only change here is the general change adding appinfo blocks for
xsd-fu to specify plurals.

OME

	AcquiredDate has been renamed to AcquisitionDate in Image.

	ExperimentGroup has been renamed to Group.

	Group is now annotatable.

	Multiple Leader``s are now possible for each ``Group.

	Contact has been removed from Group - the transform will convert
any existing Contact to a Leader.

	The direction of the references between Project, Dataset and
Image have been reversed for consistency with other linked
objects.

	DisplayName has been removed from Experimenter.

	The ImageRef element has been moved from the SPW.xsd to the
ome.xsd schema file.

	Pixels has been DEPRECATED, but is still required. The contents of
Pixels will be moved up to Image in the next release - it is a
legacy of when Image could have multiple Pixels sets and has been
redundant since the 2009-09 schema fixed the number of Pixels sets in
an Image at 1.

	OTF and all associated objects have been REMOVED.

OMERO

OMERO.xsd is not included in this release. It has been extensively
reworked and expanded as part of the OME Model and OMERO Database
synchronization but work on this will continue until the release of the
associated OMERO version. The OME Model does not make use of OMERO.xsd
so will be unaffected by the future release of this single file.

Note

Some differences must remain between OME Model and OMERO Database
for database optimization reasons - these are handled by special
cases in our code generation application xsd-fu.

ROI

	All objects defining colors now use the type ‘OME:Color’ from
file:ome.xsd.

	MarkerStart and MarkerEnd have been moved down from Shape into
Line, Polyline.

	A Polygon element (a new type of Shape) has been added.

	‘Closed’ has been deleted from Polyline (a Closed Polyline is now
transformed into a Polygon).

	The attribute Name has been deleted from Shape.

	Description has been deleted from Shape.

	Visible has been added to Shape.

	Locked has been added to Shape.

	The Fill attribute in Shape has been renamed to FillColor.

	The Stroke attribute in Shape has been renamed to StrokeColor.

	Value has been deleted from Text.

	The Text element has been renamed to Label.

	The Label attribute in Shape has been renamed to Text.

	Transform has been converted to the new type AffineTransform.

SA

Additional intermediate abstract annotations (BasicAnnotation,
NumericAnnotation, TextAnnotation, TypeAnnotation) have been added
to match OMERO annotation structure. The current annotations have been
modified to now extend these. This allows the code generation to group
annotations together by intermediate annotation type. The behavior of the
current annotations has not changed, and the new intermediate abstract
annotations are not used directly.

SPW

	FieldIndex has been added to Plate - this means the index of the
WellSample displays as the default Field.

	The human readable identifier for the screening status has been
renamed from ‘Status’ to ‘Type’.

	The direction of the references between Screen and Plate has been
reversed for consistency with other linked objects.

	The ImageRef element has been moved to the ome.xsd schema file.

Upgrading and Downgrading

The XSLT transforms between June 2011 and June 2012 versions are
available here:

http://www.openmicroscopy.org/Schemas/Transforms/2011-06-to-2012-06.xsl

http://www.openmicroscopy.org/Schemas/Transforms/2012-06-to-2011-06.xsl

Changes for June 2011

The list of the key changes for the June 2011 major release of the
ome-xml data model. This schema release will tie in with the OMERO 4.3
release.

The new major release of the schema has a new namespace and all version
numbers are reset to 1. As a major release, any file that validated
correctly using the last major release will probably not validate
correctly using this new release. Some files that failed to validate
before will now be valid. It is important to update any file readers and
writers to understand the changes.

The version number of all schema files is now 1.

This schema uses the new namespace:

http://www.openmicroscopy.org/Schemas/[NameSpaceTitle]/2011-06/

For the OME schema

http://www.openmicroscopy.org/Schemas/OME/2011-06/

and the schema file is located at

http://www.openmicroscopy.org/Schemas/OME/2011-06/ome.xsd

Overview of changes

	Polyline and Path have been DEPRECATED.

	ROI font enumerations have been updated.

	Metadata-Only Companion OME-XML and Binary-Only
OME-TIFF files have been created.

	A Creator attribute has been added for OME-XML and OME-TIFF.

	The OTF (Optical Transfer Function) has been DEPRECATED.

ROI

	Polyline and Path have been DEPRECATED as they are due to be
replaced in the next major release, to provide support for 3-dimensional
objects.

	FontFamily has been changed so it matches the standard HTML/CSS
values.

	FontStyle has been changed so it better matches standard
HTML/CSS.

OME

	The OME node has been modified to allow creation of the Metadata-Only
Companion OME-XML and Binary-Only OME-TIFF files.

	The OME node Creator attribute can now contain the name and version
of the creating application.

	The physical size of a pixel is now restricted to a positive value.

	MicrobeamManipulation can now have a Description.

	OTF (Optical Transfer Function) has been DEPRECATED and is due for
removal in the next major release.

Changes for June 2010

The list of the key changes for the June 2010 major release of the
ome-xml data model. This schema release will tie in with the OMERO 4.2
release.

The new major release of the schema has a new namespace and all version
numbers are reset to 1. As a major release, any file that validated
correctly using the last major release will probably not validate
correctly using this new release. Some files that failed to validate
before will now be valid. It is important to update any file readers and
writers to understand the changes.

The version number of all schema files is now 1.

This schema uses the new namespace:

http://www.openmicroscopy.org/Schemas/[NameSpaceTitle]/2010-06/

For the OME schema

http://www.openmicroscopy.org/Schemas/OME/2010-06/

and the schema file is located at

http://www.openmicroscopy.org/Schemas/OME/2010-06/ome.xsd

General updates

This release represents a collection of general updates to solve problems.

	The release has been brought in step with release of OMERO 4.2.

	Integer types have been made more restrictive.

	A problem with Well Sample Timepoint has been fixed.

	Width and Height have been added to ROI Mask.

	Annotations have been reworked to add new types (‘Term’ and ‘Tag’) and
allow cross-linking of all annotations.

ome.xsd

	Integer types have been made more restrictive.

ROI.xsd

	Width has been added to Mask.

	Height has been added to Mask.

	AnnotationRef has been removed from Shape (Shape is no longer
directly annotatable, annotations will be moved up to the ROI level).

SA.xsd

	CommentAnnotation has been renamed as StructuredAnnotations.

	TagAnnotation has been added to StructuredAnnotations.

	TermAnnotation has been added to StructuredAnnotations.

	Description has been added to Annotation.

	The list of AnnotationRef has been added to Annotation.

	Namespace in Annotation is now optional.

	The list of AnnotationRef has been removed from ListAnnotation (it
is now inherited from the base Annotation).

	ROI:Shape is no longer in the list of annotatable objects.

SPW.xsd

	WellOriginX in Plate has been documented.

	WellOriginY in Plate has been documented.

	NamingConvention in Plate has been documented.

	The type of Timepoint in WellSample is now an ‘xsd:dateTime’.

Changes for April 2010

List of key changes for April 2010 major release of the ome-xml data
model.

The new major release of the schema has a new namespace and all version
numbers are reset to 1. As a major release, any file that validated
correctly using the last major release will probably not validate
correctly using this new release. Some files that failed to validate
before will now be valid. It is important to update any file readers and
writers to understand the changes.

The version number of all schema files is now 1.

This schema uses the new namespace

http://www.openmicroscopy.org/Schemas/[NameSpaceTitle]/2010-04/

For the OME schema

http://www.openmicroscopy.org/Schemas/OME/2010-04/

and the schema file is located at

http://www.openmicroscopy.org/Schemas/OME/2010-04/ome.xsd

Overview of components changed

	schema cleanup

	units

	ROI changes

	SPW changes

	Filter changes

Schema cleanup

The following legacy objects have been removed:

	AnalysisChain.xsd

	AnalysisModule.xsd

	CA.xsd

	CLI.xsd

	DataHistory.xsd

	MLI.xsd

	STD.xsd

This required the removal of references to them from ome.xsd; the removal
of CustomAttributes from OME, Image and Dataset nodes; and the removal of
SemanticTypeDefinitions from the OME Node.

Units

	Units were defined for everything in

	ome.xsd

	ROI.xsd

	SPW.xsd

Follow some examples:

Physical size of a pixel in microns[um]
The Z-section this plane is for. [units:none]
This is the name of the fluorophore used to produce this channel [plain text string]

ROI changes

	ROI now has:

	an optional Description element

	an optional Name attribute

	an optional Namespace

	Shape now has:

	an abstract marker in an appinfo

	an optional Name attribute

	ChannelRef [0..*] removed

	TheC added linked to Channel [0..1]

	all the attributes previously on the dropped ShapeDisplayOptions
e.g. Fill, Stroke, FontFamily, etc.

	The Text element has been renamed to Label.

SPW changes

	Plate now has:

	PlateAcquisition [0..*] added

	an attribute Rows

	an attribute Columns

	a unique key WellSampleIndex added for the attribute Index in
SPW:Well/SPW:WellSample

	DefaultSample removed

	ScreenAcquisition has become PlateAcquisition.

	PlateAcquisition now has:

	an optional Description element added

	an optional Name attribute added

	an optional MaximumFieldCount attribute added

	Screen now has ScreenAcquisition removed.

	WellSample now has Index added.

Filter changes

	Filter now has type ‘Dichroic’.

	There is a new LightPath object (this provides much more flexibility
than SecondaryEmissionFilter and SecondaryExcitationFilter).

Other

	There have been changes and additions made to Detector.

	The lack of LED attributes was explained in documentation.

Changes for September 2009

The list of the key changes for the September 2009 major release of the
ome-xml data model.

The new major release of the schema has a new namespace and all version
numbers are reset to 1. As a major release, any file that validated
correctly using the last major release will probably not validate
correctly using this new release. Some files that failed to validate
before will now be valid. It is important to update any file readers and
writers to understand the changes.

The version number of all schema files is now 1.

This schema uses the new namespace:

http://www.openmicroscopy.org/Schemas/[NameSpaceTitle]/2009-09/

For the OME schema

http://www.openmicroscopy.org/Schemas/OME/2009-09/

and that the schema file will be located at

http://www.openmicroscopy.org/Schemas/OME/2009-09/ome.xsd

Overview of changes

Additional Schema file ROI.xsd

This provides support for the new version of the ROI objects. These were
moved from the OME namespace to there own namespace and the objects
updated to be simpler and more consistent. Existing ROI’s can be updated
to the new structure.

	Some support for ROIs in OMERO.xsd has moved to be part of the full
schema in ROI.xsd.

MicrobeamManipulation

	MicrobeamManipulation has been moved from Image to Experiment.

At present MicrobeamManipulation is stored directly under an Image
with a link to an Experiment. The structure this produces is too flexible
and allow loops of references to be created. It is proposed that we move all
the MicrobeamManipulation objects to be located under Experiment and
replace them in each Image with zero or more MicrobeamManipulationRef
objects. This also allows one MicrobeamManipulation operation to be used
in more than one Image.

ROI in MicrobeamManipulation and Image

	ROI in MicrobeamManipulation and in Image has been reworked
inline with its movement to the top level OME element.

The ROIs used by the MicrobeamManipulation
as a ‘Ref’ and stored in Image have been moved to the top level. This
allows reuse of the ROI in more than one Image.

Other changes

	LogicalChannel and ChannelComponent have been merged into the new
Channel.

	Additional keys and indexes to enforce valid IDs and References,
are listed in the OME:OME element.

	Support for the AnalysisModuleLibrary used by the original OME server
has been removed.

	Support for the DisplayOptions used by the original OME server has
been removed.

	Support for the Region used by the original OME server has been
removed.

	All description elements and attributes have become simple
description elements based on ‘xsd::string’ that preserve white space.

	The direction of all annotation links has been reversed. Now objects
in the model link to annotations, not the other way around.

	Where possible values that are singular are now an attribute of an
element, and values that can be multiple are child elements of an
element.

	Units are now specified in the schema annotations.

	Pixels now link to Channel.

	It is now possible to define valid Metadata-Only files.

	There are a large number of general changes and updates as part of a
major clean up of the types and names used in the schema, to
facilitate code generation direct from the schema.

Changes for September 2008

List of the key changes for the September 2008 major release of the
ome-xml data model.

The new major release of the schema has a new namespace and all version
numbers are reset to 1. As a major release, any file that validated
correctly using the last major release will probably not validate
correctly using this new release. Some files that failed to validate
before will now be valid. It is important to update any file readers and
writers to understand the changes.

The version number of all schema files is now 1.

This schema uses the new namespace:

http://www.openmicroscopy.org/Schemas/[NameSpaceTitle]/2008-09/

For the OME schema

http://www.openmicroscopy.org/Schemas/OME/2008-09/

and that the schema file will be located at

http://www.openmicroscopy.org/Schemas/OME/2008-09/ome.xsd

Overview of Changes

Additional Schema file SA.xsd

This provides support for the new StructuredAnnotation objects. The list
of annotations is:

XmlAnnotation
FileAnnotation
ListAnnotation
LongAnnotation
DoubleAnnotation
StringAnnotation
BooleanAnnotation
TimestampAnnotation

Additional Schema file OMERO.xsd

This provides support for the specific use of OMERO in the
StructuredAnnotation objects. Each OMERO-specific block is stored in an
XmlAnnotation. It is not strictly part of the model as it provides
support only to the OMERO system. The schema will be published to show
how we are using structured annotations within OMERO.

Optional and non-optional Objects

	The following objects have been made optional to allow the import
of the metadata from Bio-Formats and maintain consistency:

OME:Image:CreationDate
OME:Image:Pixels:Plane:PlaneTiming:DeltaT
OME:Image:Pixels:Plane:PlaneTiming:ExposureTime
OME:Experiment:ExperimenterRef
OME:Instrument:Microscope
OME:Instrument:Objective:CalibratedMagnification
OME:Instrument:Objective:LensNA
OME:Instrument:Objective:NominalMagnification
OME:Instrument:Objective:WorkingDistance
OME:Instrument:Filter:TransmittanceRange
OME:Instrument:Filter:TransmittanceRange:CutIn
OME:Instrument:Filter:TransmittanceRange:CutOut
OME:Instrument:Filter:TransmittanceRange:Transmittance
OME:StagePosition:PositionX
OME:StagePosition:PositionY
OME:StagePosition:PositionZ
OME:Project:ExperimenterRef
ManufactSpec:Manufacturer
ManufactSpec:Model

ManufactSpec is the base type for several other objects.

	The following objects have been made optional in the model but
NOT in the OMERO database - a value will be generated on import:

OME:Image:Name
OME:Plate:Name
OME:Dataset:Name
OME:Project:Name
OME:Screen:Name

	The following objects are not optional - but they now
support the value ‘Unknown’:

OME:Instrument:LightSource:Laser:LaserMedium - Added new UnknownLaserMedia type to union.
OME:Instrument:LightSource:Laser:Type - added Unknown.
OME:Instrument:LightSource:Arc:Type - added Unknown.
OME:Instrument:LightSource:Filament:Type - added Unknown.
OME:Instrument:Microscope:Type - added Unknown.
OME:Instrument:Objective:Correction - added Unknown.
OME:Instrument:Objective:Immersion - added Unknown.
OME:Instrument:Detector:Type - added Unknown.

MicrobeamManipulation

	Moving MicrobeamManipulation from Image to Experiment
(held until next release)

At present MicrobeamManipulation is stored directly under an Image
with a link to an Experiment. The structure this produces is too flexible
and allow loops of references to be created. It is proposed that we move all
the MicrobeamManipulation objects to be located under the Experiment
and replace them in each Image with zero or more
MicrobeamManipulationRef objects. This also allows one
MicrobeamManipulation operation to be used in more than one Image.

	Reworking ROI in MicrobeamManipulation (held until next release)

As a separate issue to above, the ROI used by the
MicrobeamManipulation should stop being a ‘Ref’ to one stored in Image.
In the current situation, the manipulated ROI is listed along with all the
other ROIs. It is not the same though, as the other ROIs could legitimately be
adjusted by the user whereas the MicrobeamManipulation ROI is fixed and
should not be changed after the manipulation. This change is being made at
this time as the ROI is already being changed.

New ROI model

The new model has a more powerful ROI model and the display options are
now stored as Structured Annotations. Elements added include
LogicalChannelRef, ShapeID, ROI, Shape, BasicSvgShape and
several shapes derived from BasicSvgShape.

Min/Max/Optional/Required

All elements now have an explicit minOccurs and maxOccurs. All
attributes now have a use value ‘optional’ or ‘required’.

PinholeSize type changed

The PinholeSize type has changed from ‘xsd:positiveInteger’ to
‘xsd:float’ with units µm.

Added LightEmittingDiode

This element is a stub to act as a placeholder until more values are
needed for this type.

Pixels

Pixels can now contain EITHER BinData or TiffData - previously
the model allowed there to be a mixture of the two, which was not the intended
use.

Changes for February 2008

List of the key changes made for the February 2008 major release of the
ome-xml data model.

The new major release of the schema has a new namespace and all version
numbers are reset to 1. As a major release, any file that validated
correctly using the last major release will probably not validate
correctly using this new release. Some files that failed to validate
before will now be valid. It is important to update any file readers and
writers to understand the changes.

The version number of all schema files is now 1.

This schema uses the new namespace:

http://www.openmicroscopy.org/Schemas/[NameSpaceTitle]/2008-02/

For the OME schema

http://www.openmicroscopy.org/Schemas/OME/2008-02/

and the schema file is located at

http://www.openmicroscopy.org/Schemas/OME/2008-02/ome.xsd

Overview of changes

Description (ome.xsd)

The Description element has become a string type. Description is not the
correct place for an XML sub-document. It has also an optional reference
to XML:lang that allows the language the Description is written in to be
recorded.

Description (AnalysisModule.xsd)

Description has been removed for AnalysisModule. It is now using the
version defined in ome.xsd.

UniversallyUniqueIdentifier for files (ome.xsd)

To add support for splitting data across multiple OME-TIFF files in a
way that will survive file renaming, each file now has a unique
identifier. This is a UUID attribute on the OME node. It is normally
optional but is required if you wish to use multi-part files.

Multi-part OME-TIFF file support (ome.xsd)

A TiffData block can now contain a UUID element that specifies the file
to look in for the tiff image data. The UUID element also has an
optional attribute FileName to point to the name for the file containing
the correct data. The UUID is required and the FileName is strongly
recommended. A reader should first open the file pointed to by FileName.
If it does not contain the correct UUID then the reader can either fail
or search the current folder for a file that does contain the correct
UUID. This allows multi-part files to survive renaming.

Removal of Power attributes from Arc and Filament (ome.xsd)

After Power was moved into LightSource in the 2007-06 V1 release, this
attribute was no longer needed in element Arc and Filament. These
Power attributes should have been removed at the time. Any data can be
moved to the Power in LightSource.

Simplifications (ome.xsd)

The types Correction and Immersion have been bundled into elements of
the same name. They were only used once in the schema. This should not
affect instance documents, only any schema derived from ome.xsd.

Clarification of PixelTypes (ome.xsd)

The type PixelTypes has been split into two. It now has PixelTypes and
ExtendedPixelTypes. It was being used in two different ways in previous
schemas, once in Pixels and once in OTF. Now Pixels uses
PixelTypes and OTF uses ExtendedPixelTypes.

AcquiredPixelsRef to AcquiredPixels (ome.xsd)

The element AcquiredPixelsRef has become attribute AcquiredPixels.
This has been changed to make AcquiredPixels consistent with the
DefaultPixels attribute in the Image element. Now both are a
PixelsID.

Hash of Plane data (ome.xsd)

There is now the option to store a SHA1 hash of a plane’s image data.
This can be used to detect modification. It is stored as a HashSHA1
element inside each Plane. At present this is the only supported hashing
method. Others may be added in future releases.

Files with no significant changes

The following files have no significant changes from the last version
released:

	AnalysisChain.xsd

	BinaryFile.xsd

	CA.xsd

	CLI.xsd

	DataHistory.xsd

	MLI.xsd

	SPW.xsd

	STD.xsd

Note

The file SPW.xsd has had an import of
AnalysisModule.xsd removed. This import was spurious as it
was not used in the file.

Changes for June 2007 release 2

List of the key changes made for the minor release updating the June 2007
ome-xml data model. These changes were introduced in September 2007.

The new minor release of the schema has the same namespace (2007-06) and a new
version number. As a minor release, any file that validated correctly
using the last major release will also validate correctly using this new
release. Some files that failed to validate before will now be valid. It
is important to update any file readers to understand the changes. File
writers will not necessarily need corrected.

	The version number of the ome.xsd schema is now 2.

	The version number of the SPW.xsd schema is now 2.

	The version number of the AnalysisModule.xsd schema is now 2.

	The version number of the BinaryFile.xsd schema is now 2.

	The version number of the CLI.xsd schema is now 2.

	The version number of the MLI.xsd schema is now 2.

	The version number of the STD.xsd schema is now 2.

Overview of changes

Schema Element (all files)

The schema element now imports the XML namespace from a specific
location. This gets round a problem with using the old XML namespace
which appeared with some XML parsers (notably
Xerces [http://xerces.apache.org/]), causing the schema to not be
valid.

Instrument (ome.xsd)

Parts of the Instrument object are now optional:

	LightSource

	Detector

	Objective

	OTF

Experimenter and ExperimenterType (ome.xsd)

FirstName, LastName, Email and OMEName are all
now optional. However, to be valid, an Experimenter must have AT LEAST
ONE of these present. Experimenter is now a self-contained object and
no longer uses ExperimenterType, which has been removed.

Description (ome.xsd)

While there has been no real change to the Description element, its
annotation has been altered to indicate a change in its use. The content model
is currently ‘ANY’, but this is going to change to ‘String’. Description
is no longer the correct place for an XML sub-document - CustomAttributes
should be used instead.

SerialNumber (ome.xsd)

SerialNumber, part of ManufactSpec used by Objective,
Detector, Microscope and LightSource, has been made optional as
there are occasions when the writing application does not have this
information. While it may be optional, it must be stressed that it should
normally be included, and as such the validator will raise a warning (but not
an error) if it is not present or is empty.

Regex for LSID / Internal ID (ome.xsd, SPW.xsd, AnalysisModule.xsd)

There has been a minor change to all the regular expression
(‘xsd:pattern’) portions of the IDs, which means they will no longer
generate an error on some parsers (notably the Java one). This concerned
the way the - (dash) character was specified as part of a URN and is now
escaped correctly.

DBLocation, Label and Parent, parts of Element (STD.xsd)

The DBLocation is now optional. Label and Parent have now been
added.

Description and Label (STD.xsd)

These now contain a reference to ‘XML:lang’, which allows the language the
Description or Label is written in to be recorded.

Changes for June 2007

List of the key changes made for the June 2007 release of the ome-xml
data model.

While this may not be a complete list of changes in detail, it should
cover all the categories of changes applied to the files. Some changes
affect the structure of the data model, some only the names used for
concepts, and others only the xsd files themselves.

Overview of changes

Copyright changes

The copyright of the files has been extended to recognize the
contribution of the University of Wisconsin at Madison.

Minimum specification

A minimum specification for a valid OME-XML file has been defined.
Further information, including samples, is available in the Minimum
Specification section.

Version

The way version information is recorded in the XSD files has been
changed to adhere to best practice. For further information see Version
Information.

ChannelInfo renamed and extended

This has been renamed to LogicalChannel. It also now has references to
secondary filters for emission and excitation. IlluminationType can now
be ‘NonLinear’, and Mode now has the catch-all type ‘Other’. Settings have
been added for PockelCell lasers.

Detector extended

An attribute Zoom has been added for use with confocals. Detector Type
has also been updated; it can now handle ‘EM-CCD’, ‘APD’, and ‘CMOS’
detectors. The EM-CCD detector type meant that an additional attribute was
needed called AmplificationGain.

DetectorRef extended

A reference to a detector now has the following addition attributes: a
Voltage; a ReadOutRate, which is speed at which the detector can count
the pixels; and a Binning setting where detector pixels are combined to
form a larger pixels set.

Laser extended

Lasers can now be set as the type ‘PockelCell’. A RepetitionRate has
been added. The FrequencyDoubled flag has been replaced by the
FrequencyMultiplication setting which, as an integer, can support more
systems. Laser now allows any other LightSource to be used as the
Pump. AuxLightSource and AuxLightSourceRef have been superseded
and therefore removed.

Objective extended

This now has attributes that record the LensNA, WorkingDistance,
ImmersionType, NomimalMagnification (e.g. x60),
CalibratedMagnification (e.g. x60.034), and Correction. The Correction
attribute records the coating applied to the lens. Possible Correction
types are ‘UV’, ‘PlanApo’, ‘PlanFluor’, ‘SuperFluor’, and ‘VioletCorrected’.
Magnification has been superseded and therefore removed.

ObjectiveRef renamed and extended

ObjectiveRef is now called ObjectiveSettingsRef. CorrectionCollar,
Medium, and RefractiveIndex have been added as attributes.

Pixels extended

Pixels can now contain either BinData or TiffData elements to
store the pixel data. It can now also contain Plane elements. Attributes
have been added to hold PhysicalSizeX, PhysicalSizeY,
PhysicalSizeZ, TimeIncrement, WaveStart, and WaveIncrement.
These were formerly attached to Image.

Filter and Filter Sets rewritten

The previous filter model has been replaced.

Images contracted and expanded

Image can now contain the following new elements: PlateRef,
AcquiredPixelsRef, ROI, and MicrobeamManipulation. The attribute
DefaultPixels is now required. The attributes PhysicalSizeX,
PhysicalSizeY, PhysicalSizeZ, TimeIncrement, WaveStart, and
WaveIncrement have been moved to Pixels.

Features renamed

Throughout the files, Feature and Features have become Region and
Regions. This allows the naming to be consistent with the region of
interest (ROI) model.

Screening Data Model

The new file SPW.xsd has been added to hold the Screen/Plate/Well
model. With its creation, Plate and Screen that were in
ome.xsd have been moved and re-written.

OME-Tiff extensions

The changes necessary to support the OME-Tiff format have been applied, namely
the addition of the TiffData element to Pixels as an alternative
option to the BinData element.

Internal IDs and LSID changes

The ID types used throughout the OME-XML model are designed to support
identifiers in two forms, full LSID format and internal-only format. The
formats of these are now enforced in an improved way, using new regular
expressions. For further information see
LSID.

The Image/Experiment Relationship

This has been modified.

Naming conventions

The naming convention used for attribute, element and enumeration names,
already partly implemented, is documented below, and existing names have been
corrected as necessary.

Enumerations

Enumeration names will normally use UpperCamelCase, and contain letters
and numbers and the dash; no spaces and no other punctuation. The ‘-’ is
the only permitted punctuation character (so ‘e-’ is allowed). Only
abbreviations in common use in the field should be used.

Attributes

Attribute names will use UpperCamelCase, letters only, no punctuation.
Where practical, whole words will be used rather then abbreviations.

Elements

Element names will use UpperCamelCase, letters only, no punctuation.
Where practical, whole words will be used rather then abbreviations.
Element names will normally be unique across all the OME files and where
an element name is reused, this will be for a specific reason, which is
outlined in an annotation present everywhere the element is defined.

Miscellaneous corrections

Some spelling mistakes have been corrected. There have been minor
changes to the file layouts.

Plane

This has been modified and now contains some of the structures that were
in Image.

Changes for September 2007

Content from this page is now at Changes for June 2007 release 2.

Index

 D
 | E
 | F
 | G
 | L
 | M
 | P
 | T
 | X

D

 	
 	Dichroic

E

 	
 	excellent

F

 	
 	fair

 	Filter

 	
 	FilterSet

 	FilterSetRef

 	FilterWheel

G

 	
 	good

L

 	
 	LightPath

M

 	
 	ManufacturerSpec

P

 	
 	poor

T

 	
 	tiffcomment

X

 	
 	xmlvalid

 _images/instrument_filterset.png
OME Top Level

 Stucturedamotaions |

Extend:ManufacturerSpec

_images/ome-tiff-chart.png
OME-TIFF
Raw pixels only

OMEXML

OME-TIFF with LZW
7-2ipped OME-TIFF with LZW
zipped OME-TIFF with LZW
7-2ipped OMEXML

zipped OMEXML

gzipped OMEXML

zipped OME-TIFF

7-2ipped OME-TIFF

0 20 40 60 80 | 120 | 160

_images/image_lightpath.png
OME Top Level

_images/instrument_branch.png
OME Top Level

Choose one source element
for LightSource

| StructuredAnnotations

_images/ownership.png

_images/roi_branch.png
OME Top Level

) Choose one child

Experimenter element for Shape.

Rectangle

Description | Polyiine.

Polygon

i

Description

Union

%

Shape

_images/ome-tiff-header.png
A+2

A+l4

A+26

A+24B412

Header

IFD

Directory Entry

Byte Order (MM or Il) X Tag (imageDescription)
a2 X+2 Tpe
Offset of oth IFD X+4 Count
X+8 Offset
¥
Number of Directory Entries #
Directory Entry 0 v Value

Directory Entry 1

Directory Entry 2

Offset of next IFD

<oxal version—"1.0°%
<OHE xnlsn:xsi="http: //v.v3, nrg/ZBB]/XMLSchema—)ns(;nce“‘
xnlns="http://www. openmicroscopy . org/ S5 5505 55555 fome . xsd"
xsiischenaLocation=" ttp://.openmicroscopy.org/ Sssseissse s s5ssl/one
383Nt tp. //waw openmicroscopy .org/ ASSIILEISAS S xsds
<Experinenter I0-"urn;1sid: loci .visc. edu: Experanenter: 2'
<FirstName>Kevin</FirstName>
<Lastilane>Eliceiri</Lastlane>
<Email>eliceiri@wisc.edu</Email>

<Institution/>
<GroupRef T0="urn:sid: loci.wisc.edu:Group:1*/>

</Experinenter>

<Inage Nane="TAABA" TD="urn:1sid: loci wisc.edu: Inage:ovsd27

Defaul tPixels="urn: Lsid: Loci .wisc. edu:Pixels: ovs427">
<Creationbate>2005-12-07712: 29; 37</Creationbate>

<ExperinenterRef 1D="urn:1sid: loci.visc. edu:Experinenter
<Pixels PixelType="Uint8" SizeX="S12' SizeY="512" Size

/>

Dinensionorde urn: Tsid: Loci . wisc. edu:Pixels: ovsa27
BigEndian="true: SizeT="23">
<Tiffoata/>
</Pixels>

</Inage>
</OHE>

xsd

_images/organization.png
OME Top Level

i
[LI e I - |
4E

o ;_.Ij Expermenael] o[Expomenecrourel |

ExperimenterGroupRef
{ FolderRef

—— |

]
[opommen [Mcoboamvanpuiaton [wamsourcesetings |
— @ —

[1

Instrument

_images/screen_well_plate.png

_images/shape_types.png
Choose one child element for Shape.

Point

Rectangle

[Ea)

Elipse

Polyline
e 1

Open, straight sides.

A

Polygon
2—3 A

%

Label

]

Cell

Displays the value of the Text
attibute of the Shape

_images/filter_lightpath_details.png
OME Top Level

 StucturedAmotaions |

N i) e, |

_images/hcs_structures.png
OME Top Level

| Experimenter

ExperimenterGroup

i Project

_images/annotation_points.png
OME Top Level

_images/filter_lightpath.png
OME Top Level

Screen

_images/image_branch.png
OME Top Level

Choose one data
storage slement for
iels.

BinData

IIs

==

_images/structured_annotation_branch.png
OME Top Level

Experimenter

Choose one or more

annotation element

All annotation types can
reference 0 or more other
annotations

nav.xhtml

 Table of Contents

 		
 OME Data Model and File Formats 6.3 Documentation

 		
 The OME-TIFF format

 		
 OME-TIFF file structure

 		
 OME-TIFF specification

 		
 OME-TIFF example source code for common operations

 		
 OME-TIFF sample data

 		
 The OME-XML format

 		
 Extracting, processing and validating OME-XML

 		
 OME-XML Java library

 		
 The OMERO pyramid format

 		
 Compliant file specification

 		
 Compliant HCS specification

 		
 Minimum specification

 		
 Developer introduction

 		
 Using OME-XML schema elements

 		
 File compression

 		
 Sample image files

 		
 IDs and LSIDs in OME-XML

 		
 The OME system of units

 		
 Schema Generation information

 		
 Current Data Model overview

 		
 Filter and FilterSet

 		
 Screen Plate Well

 		
 Structured Annotations

 		
 ROI model

 		
 6D, 7D and 8D storage

 		
 Legacy use-case support

 		
 SPIM initial support

 		
 Tiled images

 		
 Schema version information

 		
 Transformations

 		
 Changes for June 2016 release 2

 		
 Changes for June 2016

 		
 Changes for January 2015

 		
 Changes for June 2013

 		
 Changes for June 2012

 		
 Changes for June 2011

 		
 Changes for June 2010

 		
 Changes for April 2010

 		
 Changes for September 2009

 		
 Changes for September 2008

 		
 Changes for February 2008

 		
 Changes for June 2007 release 2

 		
 Changes for June 2007

_images/OME-schema-table-formatted_final.png
Image
AcquiredDate
Description
Name

ImagingEnvironment
AirPressure
CO2Porcent
Humidity

Temperature

ObjectiveSettings
CorrectionCollar

Medium
Refractivelndex

Pixels

DimensionOrder

PhysicalSizeX

PhysicalSizeY
PhysicalSizeZ
izeC

Timelncrement

Type

BinData

TitData

FirsiC
FirstT
FirstZ
IFD

PlaneCount

i

Channel

Color
ConfrastMethod

EmissionWavelength
ExcitationWavelength

Fluor
lluminationType

Name
NDFilter

PinholeSize

PockelCellSetting
SamplesPerPixel

DetectorSettings
Binning
Gain
Offset
ReadOutRate
Voltage
LightSourceSettings
Attenuation
Wavelength
Plane
DeltaT
ExposureTime
PositionX

Describes the actual image and its mefadata.
The acquisition date of the Image.

A multiline description for the image.

A short description for the image. This would be used to, for exmple, select
the image from a list.

Describes the environment that the biological sample was in during the
experiment.

AirPressure in millibars[mbar].

%CO2 as a percentiractions from 0.0 fo 1.0 [%].

Humidity as a percentraction from 0.0 fo 1.0 [%].

Temperature [degrees Celsius].

Describes any seffings on or around the objective
An adjustable ring on the objective that corrects for changes in immersion
medium refractive imdex. Arbitrary scale and unitless.

A description of a Medium used for the lens. e.g., Oil, Water,
WaterDipping, Air, Multi, Glycerol, Other

Refractive index is that of the immersion medium.

Defines the location and paramater sof the Pixels, the actual binary image
data

The order in which the individual planes of data are interleaved. e.g.,
XYZCT, XYZTC, XYCTZ, XYCZT, XYTCZ, XYTZC

} Physical size in x, y, z of a pixel in microns[um]

} Dimensional size x, y, z ¢, t of pixel data array.

Used for fime series that have a global fiming specification instecd of per-
imepoint fiming info, e.g., a video siream. [s]

The variable fype used fo represent each pixel in the image. .., inf8,
int16, int32, vint8, uint16, vint32, float, bit, double, complex, double-
complex

1fthe pixel data is stored dierly in the XM
Elements

enclosed in BinData

If the pixel dafa s stored in an OMETIFF file it s described by TiffData
Elements

}Yhe TiffData element describes how the TIFF IFD numbers are mapped to the
Pixels.

The TiffData UUID and Filename are used for mulfifile datasets to mair
connections between the files

AcquisiionMode describes the fype of microscopy performed. e.g.,
WideField, LaserScanningMicroscopy, LaserScanningConfocal,
SpinningDiskConfocal, SlitScanConfocal, MuliiPhotonMicroscopy,
Structuredillumination, SingleMoleculelmaging, TotallnternalReflection,
Fluorescencelifefime, Spectrallmaging,
FluorescenceCorrelationSpectroscopy,
NearfieldScanningOpticalMicroscopy, SecondHarmonicGenerationlmaging,
Other

A color used render this channel

The technique used o achieve contrast. e.g., Brighfield, Phase, DIC,
HoffmanModulation, Obliquelllumination, PolarizedLight, Darkfeld,
Fluorescence, Other

Emission wavelength of excitation for a parficular channel, in nanometres
[om].

Excitation wavelength of excitation for a parficular channel, in nanometres
[om].

The name of the fluorophore used to produce this channel.

The method of luminfion used to capture the channel. e.g., Transited,
Epifivorescence, Oblique, NonLinear, Other

A short name for the channel, used to, for exampl;
from a

fentity the channel

Specifies the combined effect of any neural density fiters used. [%
Transmittance]
Specifies adjustable pin hole diameters for confocal microscopes (microns

[um]).

Amount the polarization of the beam infroduced by Pockel Cell if any.
The number of samples the detector fakes to form each pixel value.

Represents the number of pixels that are combined fo form larger p
 1x1,2x2, 4xd, 8x8, Other

The Gein of the defeclor.

The Offset of the defector.

Detector read speed (MHz)

The Voltage of the detector. volts[V]

The Attenuaion of the light source. [%]
The Wavelengh of the light source. [nm]

Elapsed fime since the beginning of the experiment [5]
Elapsed fime during image recording. [s]

}Yhe X, z postion of the stage. [ym]

PositionZ
StageLabel
Name Short name for this stage location This would be used fo, for example,
identify the channel from a lst.

X

Y }The labeled x, y, z position of the stage. [ym]

z

©2010 Linkert et al. Figure originally published as Figure 2, Linkert et al (2010, J. Cell Biol. 189(5):777-762

(http://jch.rupress.org/content/ 189/5/777)

_images/Sample2x2Images.png
Sample Volume

Sample split into 4 Image tiles

Each image has
named StageLab

Image split into Planes

Each Plane has aj
StagePosition

_static/file.png

_images/transformations_quality.png
Targets

Source 2016-06 2015-01 2013-06 2012-06 2011-06 2010-06 2010-04 2009-09 2008-09 2008-02 2007-06 2003-FC

2016-06 -- good good good good good fair fair fair poor poor poor
2015-01 -- good good good good fair fair fair poor poor poor
2013-06 -- good good good fair fair fair poor poor poor
2012-06 -- good good fair fair fair poor poor poor
2011-06 -- good fair fair fair poor poor poor
2010-06 -- fair fair poor poor poor poor
2010-04 -- poor poor poor poor poor
2009-09 -- poor poor poor poor
2008-09 -- poor poor poor
2008-02 excellent -- poor poor
2007-06 -- poor
2003-FC -

Upgrades

sapeiSumoq

_images/FilterSet-Overview.png
E

I}

o VoSS

Emission Fier

_static/minus.png

_static/plus.png

